COVID-19 related to sarcopenia: Current perspectives on etiology, clinical implications, and nutritional rehabilitation

Main Article Content

Elis Regina Muller Ramos
Anderson Matheus Oliveira Haas Verdi
https://orcid.org/0009-0005-3845-0618
Stephane Janaina de Moura Escobar
https://orcid.org/0000-0002-4473-2567
Angelica Rocha de Freitas Melhem
Mariana Abe Vicente Cavagnari
Caryna Eurich Mazur
Dalton Luiz Schiessel

Abstract

Sarcopenia is a progressive skeletal muscle disorder characterized by reduced strength and quality. Pathophysiological mechanisms, clinical aspects, and nutritional points were related to sarcopenia in COVID-19 found in skeletal muscle during and after the disease course, which corroborated the development of adverse events. Declining physical activity, insufficient protein intake, and worsened proinflammatory response have been shown to have negative consequences on muscle protein synthesis, potentiating the risk of acute sarcopenia. Obesity sarcopenia has also been shown to worsen the prognosis of patients with SARS-CoV-2. Nutritional rehabilitation is used to prevent or minimize the development of acute sarcopenia. Dietary recommendations include increased energy supply and protein intake of 1.2 to 2.0 g/kg of body weight. Evidence suggests that aging with sedentary behaviors, pathophysiological changes, and inflammation alter body composition. In addition, nutritional deficiencies are predictors and aggravators of acute sarcopenia in COVID-19.



Article Details

How to Cite
1.
Ramos ERM, Verdi AMOH, Escobar SJ de M, Melhem AR de F, Cavagnari MAV, Mazur CE, et al. COVID-19 related to sarcopenia: Current perspectives on etiology, clinical implications, and nutritional rehabilitation. HSJ [Internet]. 2023 Sep. 17 [cited 2024 Nov. 25];13(3):10-6. Available from: https://portalrcs.hcitajuba.org.br/index.php/rcsfmit_zero/article/view/1436
Section
NARRATIVE REVIEW
Author Biographies

Elis Regina Muller Ramos, Universidade Estadual do Centro-Oeste - UNICENTRO

Registered Dietitian – Graduated in Nutrition, Health Science Center, Campus CEDETEG, Midwest State University – UNICENTRO. Postgraduate student in Sports Nutrition and Aesthetics by Plenitude Educação.

 

Anderson Matheus Oliveira Haas Verdi, Escola Paulista de Medicina (EPM) da Universidade Federal de São Paulo (UNIFESP)

Registered Dietitian - Master's student at the Nutrition Program (PPGNUT) -  Paulista School of Medicine (EPM) -  Federal University of São Paulo (UNIFESP).

Stephane Janaina de Moura Escobar, Universidade Estadual do Centro-Oeste - UNICENTRO

Nutritionist, Master and PhD in Biochemical Sciences from the Federal University of Paraná (UFPR). Professor of the Nutrition Course at the State University of the Midwest.

Angelica Rocha de Freitas Melhem, Universidade Estadual do Centro-Oeste - UNICENTRO

Nutritionist, Master and Doctor of Science (Gastroenterology) - Paulista School of Medicine (EPM)/Federal University of São Paulo (UNIFESP).

Mariana Abe Vicente Cavagnari, Universidade Estadual do Oeste do Paraná, Campus Francisco Beltrão

Nutritionist, Master of Science in Translational Medicine (Gastroenterology Oncology area) by the Federal University of São Paulo. PhD in Sciences PPG Gastroenterology from the Federal University of São Paulo.

Caryna Eurich Mazur, Universidade Estadual do Oeste do Paraná, Campus Francisco Beltrão

Nutritionist, Master in Food and Nutritional Safety, PhD in Internal Medicine and Health Sciences. Professor of the Collegiate of Nutrition at the State University of Western Paraná, Campus Francisco Beltrão.

Dalton Luiz Schiessel, Universidade Estadual do Centro-Oeste - UNICENTRO

Nutritionist,  Post Doctorate at the University of Alberta - Cross Cancer Institute, Doctor (concentration area of Physiology) and Master - PPG in Cellular and Molecular Biology from UFPR.

References

Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008;27(6):793-9. https://doi.org/10.1016/j.clnu.2008.06.013

Morley JE, Kalantar-Zadeh K, Anker SD. COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020;11(4):863-5. https://doi.org/10.1002/jcsm.12589

Anker MS, Landmesser U, von Haehling S, Butler J, Coats AJS, Anker SD. Weight loss, malnutrition, and cachexia in COVID-19: facts and numbers. J Cachexia Sarcopenia Muscle. 2021;12(1):9-13. https://doi.org/10.1002/jcsm.12674

Welch C, Greig C, Masud T, Wilson D, Jackson TA. COVID-19 and acute sarcopenia. Aging Dis. 2020;11(6):1345-51. https://doi.org/10.14336/AD.2020.1014

Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post-COVID-19 acute sarcopenia: physiopathology and management. Aging Clin Exp Res. 2021;33(10):2887-98. https://doi.org/10.1007/s40520-021-01942-8

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39(4):412-23. https://doi.org/10.1093/ageing/afq034

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afy169

Aryana IGPS, Setiati S, Rini SS. Molecular Mechanism of Acute Sarcopenia in Elderly Patient with COVID - 19. Acta Med Indones. 2021;53(4):481-92.

Cederholm T, Jensen GL, Correia MITD, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle. 2019;10(1):207-17. https://doi.org/10.1002/jcsm.12383

Allard L, Ouedraogo E, Molleville J, Bihan H, Giroux-Leprieur B, Sutton A, et al. Malnutrition: Percentage and association with prognosis in patients hospitalized for coronavirus disease 2019. Nutrients. 2020;12(12):3679. https://doi.org/10.3390/nu12123679

Cava E, Neri B, Grazia M, Riso S, Carbone S. Obesity pandemic during COVID-19 outbreak: Narrative review and future considerations. Clin Nutr. 2021;40:1637-43. https://doi.org/10.1016/j.clnu.2021.02.038

Martinez-Ferran M, Guía-Galipienso F de la, Sanchis-Gomar F, Pareja-Galeano H. Metabolic Impacts of Confinement during the COVID-19 Pandemic Due to Modified Diet and Physical Activity Habits. Nutrients. 2020;12(6):1549. https://doi.org/10.3390/nu12061549

Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging. 2021;25(7):824-53. https://doi.org/10.1007/s12603-021-1665-8

Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. Geroscience. 2020;42(6):1547-78. https://doi.org/10.1007/s11357-020-00272-3

Mautong H, Gallardo-Rumbea JA, Alvarado-Villa GE, Fernández-Cadena JC, Andrade-Molina D, Orellana-Román CE, et al. Assessment of depression, anxiety and stress levels in the Ecuadorian general population during social isolation due to the COVID-19 outbreak: a cross-sectional study. BMC Psychiatry. 2021;21(1):212. https://doi.org/10.1186/s12888-021-03214-1

Clark BC, Carson RG. Sarcopenia and Neuroscience: Learning to Communicate. J Gerontol A Biol Sci Med Sci. 2021;76(10):1882-90. https://doi.org/10.1093/gerona/glab098

Ali AM, Kunugi H. Skeletal Muscle Damage in COVID-19: A Call for Action. Medicina (Lithuania). 2021;57(4):372. https://doi.org/10.3390/medicina57040372

Cox MC, Booth M, Ghita G, Wang Z, Gardner A, Hawkins RB, et al. The impact of sarcopenia and acute muscle mass loss on long-term outcomes in critically ill patients with intra-abdominal sepsis. J Cachexia Sarcopenia Muscle. 2021;12(5):1203-13. https://doi.org/10.1002/jcsm.12752

Urner M, Mitsakakis N, Vorona S, Chen L, Sklar MC, Dres M, et al. Identifying subjects at risk for diaphragm atrophy during mechanical ventilation using routinely available clinical data. Respir Care. 2021;66(4):551-8. https://doi.org/10.4187/respcare.08223

Brosnahan SB, Jonkman AH, Kugler MC, Munger JS, Kaufman DA. COVID-19 and Respiratory System Disorders: Current Knowledge, Future Clinical and Translational Research Questions. Arterioscler Thromb Vasc Biol. 2020;40(11):2586-97. https://doi.org/10.1161/ATVBAHA.120.314515

Schiessel DL, Yamazaki RK, Kryczyk M, Coelho I, Castro D, Yamaguchi AA, et al. Does Oil Rich in Alpha-Linolenic Fatty Acid Cause the Same Immune Modulation as Fish Oil in Walker 256 Tumor-Bearing Rats? Nutr Cancer. 2016;68(8):1369-80. https://doi.org/10.1080/01635581.2016.1224364

Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity. 2020;28(7):1195-9. https://doi.org/10.1002/oby.22831

Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7(APR):30. https://doi.org/10.3389/fendo.2016.00030

Ma C, Cong Y, Zhang H. COVID-19 and the Digestive System. Am J Gastroenterol. 2020;115(7):1003-6. https://doi.org/10.14309/ajg.0000000000000691

Soares MN, Eggelbusch M, Naddaf E, Gerrits KHL, van der Schaaf M, van den Borst B, et al. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle. 2022;13(1):11-22. https://doi.org/10.1002/jcsm.12896

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052

Stukalov A, Girault V, Grass V, Karayel O, Bergant V, Urban C, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV-2. Nature. 2021;594(7862):246-252. https://doi.org/10.1038/s41586-021-03493-4

Siddiq MAB, Rathore FA, Clegg D, Rasker JJ. Pulmonary rehabilitation in COVID-19 patients: A scoping review of current practice and its application during the pandemic. Turk J Phys Med Rehabil. 2021;66(4):480-94. https://doi.org/10.5606/tftrd.2020.6889

Pleguezuelos E, Del Carmen A, Llorensi G, Carcole J, Casarramona P, Moreno E, et al. Severe loss of mechanical efficiency in COVID-19 patients. J Cachexia Sarcopenia Muscle. 2021;12(4):1056-63. https://doi.org/10.1002/jcsm.12739

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74. https://doi.org/10.1038/s41577-020-0311-8

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395(10229):1033-4. https://doi.org/10.1016/S0140-6736(20)30628-0

Schiessel DL, Baracos VE. Barriers to cancer nutrition therapy: Excess catabolism of muscle and adipose tissues induced by tumour products and chemotherapy. Proc Nutr Soc. 2018;77(4):394-402. https://doi.org/10.1017/S0029665118000186

Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res Rev. 2020;64(April):101185. https://doi.org/10.1016/j.arr.2020.101185

Alfaro E, Díaz-García E, García-Tovar S, Zamarrón E, Mangas A, Galera R, et al. Upregulated Proteasome Subunits in COVID-19 Patients: A Link with Hypoxemia, Lymphopenia and Inflammation. Biomolecules. 2022;12(3):442. https://doi.org/10.3390/biom12030442

Ahmad K, Shaikh S, Ahmad SS, Lee EJ, Choi I. Cross-Talk Between Extracellular Matrix and Skeletal Muscle: Implications for Myopathies. Front Pharmacol. 2020;11(February):142. https://doi.org/10.3389/fphar.2020.00142

Rodriguez B, Branca M, Gutt-Will M, Roth M, Söll N, Nansoz S, et al. Development and early diagnosis of critical illness myopathy in COVID-19 associated acute respiratory distress syndrome. J Cachexia Sarcopenia Muscle. 2022;(June 2021):1883-95. https://doi.org/10.1002/jcsm.12989

Ying L, Zhang Q, Yang YM, Zhou JY. A Combination of Serum Biomarkers in Elderly Patients with Sarcopenia: A Cross-Sectional Observational Study. Int J Endocrinol. 2022;2022:4026940. https://doi.org/10.1155/2022/4026940

Asoudeh F, Dashti F, Raeesi S, Heshmat R, Bidkhori M, Jalilian Z, et al. Inflammatory cytokines and sarcopenia in Iranian adults-results from SARIR study. Sci Rep. 2022;12(1):5471. https://doi.org/10.1038/s41598-022-09139-3

Ali AM, Kunugi H. Screening for Sarcopenia (Physical Frailty) in the COVID-19 Era. Int J Endocrinol. 2021;2021:5563960. https://doi.org/10.1155/2021/5563960

Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar MD, Batsis JA, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Clinical Nutrition. 2022;41(4):990-1000. https://doi.org/10.1016/j.clnu.2021.11.014

Wilkinson TJ, Yates T, Baker LA, Zaccardi F, Smith AC. Sarcopenic obesity and the risk of hospitalization or death from coronavirus disease 2019: findings from UK Biobank. JCSM Rapid Commun. 2022;5(1):3-9. https://doi.org/10.1002/rco2.47

Zhang X, Lewis AM, Moley JR, Brestoff JR. A systematic review and meta-analysis of obesity and COVID-19 outcomes. Scientific Reports - Nature. 2021;11(1):7193. https://doi.org/10.1038/s41598-021-86694-1

Kara M, Ata AM, Özçakar L. Sarcopenic obesity is the real problem in COVID-19 ! Eur J Intern Med. 2021;93(August):103-4. https://doi.org/10.1016/j.ejim.2021.08.007

Mentella MC, Scaldaferri F, Gasbarrini A, Miggiano GAD. The role of nutrition in the covid-19 pandemic. Nutrients. 2021;13(4):1093. https://doi.org/10.3390/nu13041093

McCarthy C, O'Donnell CP, Kelly NEW, O'Shea D, Hogan AE. COVID-19 severity and obesity: are MAIT cells a factor? Lancet Respir Med. 2021;9(5):445-7. https://doi.org/10.1016/S2213-2600(21)00140-5

Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21(11):e13128. https://doi.org/10.1111/obr.13128

Barazzoni R, Bischoff SC, Busetto L, Cederholm T, Schneider S, Singer P, et al. Nutritional management of individuals with obesity and COVID-19: ESPEN expert statements and practical guidance. Clin Nutr. 2021;41(12):2869-86. https://doi.org/10.1016/j.clnu.2021.05.006

Higgins V, Sohaei D, Diamandis EP, Prassas I. COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit Rev Clin Lab Sci. 2021;58(5):297-310. https://doi.org/10.1080/10408363.2020.1860895

Anaya J manuel, Rojas M, Salinas ML, Rodríguez Y, Roa G, Lozano M, et al. Post-COVID syndrome. A case series and comprehensive review. Autoimmun Rev. 2020;20(11):102947. https://doi.org/10.1016/j.autrev.2021.102947

Nalbandian A, Sehgal K, Gupta A, Madhavan M V, Mcgroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-15. https://doi.org/10.1038/s41591-021-01283-z

Wong SH, Lui RNS, Sung JJY. Covid-19 and the digestive system. J Gastroenterol Hepatol (Australia). 2020;35(5):744-8. https://doi.org/10.1111/jgh.15047

Dahiya DS, Kichloo A, Albosta M, Pagad S, Wani F. Gastrointestinal implications in COVID-19. J Investig Med. 2020;68(8):1397-401. https://doi.org/10.1136/jim-2020-001559

Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterol. 2020;159(3):944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048

Liu C, Cheung WH, Li J, Chow SKH, Yu J, Wong SH, et al. Understanding the gut microbiota and sarcopenia: a systematic review. J Cachexia Sarcopenia Muscle. 2021;12(6):1393-407. https://doi.org/10.1002/jcsm.12784

Stachowska E, Folwarski M, Jamioł-Milc D, Maciejewska D, Skonieczna-żydecka K. Nutritional support in coronavirus 2019 disease. Medicina (Lithuania). 2020;56(289):289. https://doi.org/10.3390/medicina56060289

Barrea L, Grant WB, Frias-Toral E, Vetrani C, Verde L, de Alteriis G, et al. Dietary Recommendations for Post-COVID-19 Syndrome. Nutrients. 2022;14(6):1305. https://doi.org/10.3390/nu14061305

Rogeri PS, Zanella R, Martins GL, Garcia MDA, Leite G, Lugaresi R, et al. Strategies to prevent sarcopenia in the aging process: Role of protein intake and exercise. Nutrients. 2022;14(1):52. https://doi.org/10.3390/nu14010052

Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48-79. https://doi.org/10.1016/j.clnu.2018.08.037

Narici M, Vito G De, Franchi M, Paoli A, Moro T, Marcolin G, et al. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci. 2021;21(4):614-35. https://doi.org/10.1080/17461391.2020.1761076

Ferrara F, de Rosa F, Vitiello A. The Central Role of Clinical Nutrition in COVID-19 Patients During and After Hospitalization in Intensive Care Unit. SN Compr Clin Med. 2020;2(8):1064-8. https://doi.org/10.1007/s42399-020-00410-0

Ko CH, Wu SJ, Wang ST, Chang YF, Chang CS, Kuan TS, et al. Effects of enriched branched-chain amino acid supplementation on sarcopenia. Aging. 2020;12(14):15091-103. https://doi.org/10.18632/aging.103576

Pallath MM, Ahirwar AK, Tripathi SC, Asia P, Sakarde A, Gopal N. COVID-19 and nutritional deficiency: A review of existing knowledge. Horm Mol Biol Clin Investig. 2021;42(1):77-85. https://doi.org/10.1515/hmbci-2020-0074

Angelidi AM, Kokkinos A, Katechaki E, Ros E, Mantzoros CS. Mediterranean diet as a nutritional approach for COVID-19. Metabolism. 2020;114:154407. https://doi.org/10.1016/j.metabol.2020.154407

Iddir M, Brito A, Dingeo G, Del Campo SSF, Samouda H, La Frano MR, et al. Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the covid-19 crisis. Nutrients. 2020;12(6):1562. https://doi.org/10.3390/nu12061562

Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, et al. The microbiota-mediated dietary and nutritional interventions for COVID-19. Clinical Immunology. 2021;226:108725. https://doi.org/10.1016/j.clim.2021.108725