Intestinal Microbiota and Sclerosis Lateral Amyotrophic

Main Article Content

Mariana Dantas de Carvalho Vilar
https://orcid.org/0000-0002-9988-877X
Sancha Helena de Lima Vale
https://orcid.org/0000-0002-0972-1678
Eliane Lopes Rosado
https://orcid.org/0000-0003-0889-4662
Mário Emílio Teixeira Dourado Júnior
José Brandão-Neto
https://orcid.org/0000-0003-3414-5171
Lúcia Leite-Lais
https://orcid.org/0000-0002-8061-7048

Abstract

The human gastrointestinal tract contains numerous microorganisms. This intestinal microbiota (IM) has a mutualistic relationship with the human organism, and it plays a fundamental role in regulating metabolic, endocrine, and immunological functions. Intestinal dysbiosis is associated with phenotypes of many chronic and inflammatory diseases. This association is explained by the functions of the IM and the existing bi-directional communication of the microbiota-intestine-brain axis. Studies have uncovered new evidence between the IM and neurodegenerative diseases recently, including amyotrophic lateral sclerosis (ALS). Given this, the present narrative review discusses didactically about IM, its functions, its relationship with the neuroimmune-endocrine system, and its association with neurodegenerative diseases, with emphasis on ALS.



Article Details

How to Cite
1.
Vilar MD de C, Vale SH de L, Rosado EL, Dourado Júnior MET, Brandão-Neto J, Leite-Lais L. Intestinal Microbiota and Sclerosis Lateral Amyotrophic. Health Sci J [Internet]. 2022Mar.29 [cited 2024Apr.26];12(1):3-13. Available from: https://portalrcs.hcitajuba.org.br/index.php/rcsfmit_zero/article/view/1223
Section
NARRATIVE REVIEW
Author Biographies

Mariana Dantas de Carvalho Vilar, Federal University of Rio Grande do Norte (UFRN)

Nutritionist at the Federal University of Rio Grande do Norte (UFRN).

Sancha Helena de Lima Vale, Federal University of Rio Grande do Norte (UFRN)

Professor of Clinical Nutrition at UFRN, PhD in Health Sciences at UFRN.

Eliane Lopes Rosado, Josué de Castro Nutrition Institute (INJC), Federal University of Rio de Janeiro (UFRJ)

Professor of Clinical Nutrition at UFRJ, Master and Doctor in Food Science and Technology at the Federal University of Viçosa.

Mário Emílio Teixeira Dourado Júnior, Federal University of Rio Grande do Norte (UFRN)

Professor of Neurology at UFRN, Master in Biochemistry and Doctor in Health Sciences at UFRN.

José Brandão-Neto, Federal University of Rio Grande do Norte (UFRN)

Professor of Endocrinology at UFRN, Master and Doctor in Internal Medicine at the Faculty of Medicine of Ribeirão Preto, University of São Paulo.

Lúcia Leite-Lais, Federal University of Rio Grande do Norte (UFRN)

Professor of Clinical Nutrition at UFRN, PhD in Health Sciences at UFRN.

References

1. Kho ZY, Lal SK. The human gut microbiome - a potential controller of wellness and disease. Front Microbiol. 2018;9:1835. https://doi.org/10.3389/fmicb.2018.01835
2. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260-70. https://doi.org/10.1038/nrg3182
3. McCombe PA, Henderson RD, Lee A, Lee JD, Woodruff TM, Restuadi R, et al. Gut microbiota in ALS: possible role in pathogenesis? Expert Rev Neurother. 2019;19(9):785-805. https://doi.org/10.1080/14737175.2019.1623026
4. Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin N Am. 2017;46:77-89. https://doi.org/10.1016/j.gtc.2016.09.007
5. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533
6. Ding RX, Goh WR, Wu RN, Yue XQ, Luo X, Khine WWT, et al. Revisit gut microbiota and its impact on human health and disease. J Food Drug Anal. 2019;27(3):623-31. https://doi.org/10.1016/j.jfda.2018.12.012
7. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A Changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014
8. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. https://doi.org/10.1186/1471-2180-9-123
9. Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut Reactions: Breaking down xenobiotic-microbiome interactions. Pharmacol Rev. 2019;71(2):198-224. https://doi.org/10.1124/pr.118.015768
10. Selma-Royo M, Tarrazó M, García-Mantrana I, Gómez-Gallego C, Salminen S, Collado MC. Shaping microbiota during the first 1000 days of life. Adv Exp Med Biol. 2019;1125:3-24. https://doi.org/10.1007/5584_2018_312
11. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. https://doi.org/10.1128/MMBR.00036-17
12. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36. https://doi.org/10.1042/BCJ20160510
13. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325-40. https://doi.org/10.1194/jlr.R036012
14. Venegas DP, la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;20:277. https://doi.org/10.3389/fimmu.2019.00277
15. Amoroso C, Perillo F, Strati F, Fantini MC, Caprioli F, Facciotti F. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells. 2020;9(5):1234. https://doi.org/10.3390/cells9051234
16. Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol. 2018;200(2):203-17. https://doi.org/10.1007/s00203-017-1459-x
17. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91-119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9
18. Liu H, Wang J, He T, Becker S, Zhang G, Li D, et al. Butyrate: A double-edged sword for health? Adv Nutr. 2018;9(1):21-9. https://doi.org/10.1093/advances/nmx009
19. Lin MY, de Zoete MR, van Putten JP, Strijbis K. Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases. Front Immunol. 2015;6:554. https://doi.org/10.3389/fimmu.2015.00554
20. Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol. 2018;9:533. https://doi.org/10.3389/fphar.2018.00533
21. Yang G, Chen S, Deng B, Tan C, Deng J, Zhu G, et al. Implication of G protein-coupled receptor 43 in intestinal inflammation: a mini-review. Front Immunol. 2018;9:1434. https://doi.org/10.3389/fimmu.2018.01434
22. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol. 2008;59 (Suppl 2):251-62. PMID: 18812643
23. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677-689. https://doi.org/10.1016/j.immuni.2009.08.020
24. Marietta E, Horwath I, Taneja V. Microbiome, immunomodulation, and the neuronal system. Neurotherapeutics. 2018;15:23-30. https://doi.org/10.1007/s13311-017-0601-4
25. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology. 2016;5(4):e73. https://doi.org/10.1038/cti.2016.17
26. Wang HX; Wang YP. Gut microbiota-brain axis. Chin Med J. 2016;129(19):2372-2380. https://doi.org/10.4103/0366-6999.190667
27. Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, Bonfiglio G, et al. Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health. 2018;15(8):1679. https://doi.org/10.3390/ijerph15081679
28. Benakis C, Martin-Gallausiaux C, Trezzi JP, Melton P, Liesz A, Wilmes P. The microbiome-gut-brain axis in acute and chronic brain diseases. Curr Opin Neurobiol. 2020;61:1-9. https://doi.org/10.1016/j.conb.2019.11.009
29. Sasmita AO. Modification of the gut microbiome to combat neurodegeneration. Rev. Neurosci. 2019;30:795-805. https://doi.org/10.1515/revneuro-2019-0005
30. Di Gioia D, Cionci NB, Baffoni L, Amoruso A, Pane M, Mogna L, et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis. BMC Med. 2020;18(1):153. https://doi.org/10.1186/s12916-020-01607-9
31. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, et al. Amyotrophic lateral sclerosis. Lancet. 2017;390(10107):2084-98. https://doi.org/10.1016/S0140-6736(17)31287-4
32. Gois AM, Mendonça DMF, Freire MAM, Santos JR. In vitro and in vivo models of amyotrophic lateral sclerosis: an updated overview. Brain Res Bull. 2020;159:32-43. https://doi.org/10.1016/j.brainresbull.2020.03.012
33. Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, et al. Nearly 30 years of animal models to study amyotrophic lateral sclerosis: a historical overview and future perspectives. Int J Mol Sci. 2021;22(22):12236. https://doi.org/10.3390/ijms222212236
34. Wu S, Yi J, Zhang YG, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3(4):e12356. https://doi.org/10.14814/phy2.12356
35. Fang X, Wang X, Yang S, Meng F, Wang X, Wei H, et al. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front Microbiol. 2016;7:1479. https://doi.org/10.3389/fmicb.2016.01479
36. Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56-63. https://doi.org/10.1016/j.neulet.2016.02.009
37. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol. 2004;141(5):874-80. https://doi.org/10.1038/sj.bjp.0705682
38. Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005;93(5):1087-98. https://doi.org/10.1111/j.1471-4159.2005.03077.x
39. Zhang YG, Wu S, Yi J, Xia Y, Jin D, Zhou J, et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther. 2017;39(2):322-36. https://doi.org/10.1016/j.clinthera.2016.12.014
40. Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS, Choudry R, Brown Jr. RH, et al. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler. 2009;10(2):99-106. https://doi.org/10.1080/17482960802320487
41. Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383(10):919-30. https://doi.org/10.1056/NEJMoa1916945
42. Wright ML, Fournier C, Houser MC, Tansey M, Glass J, Hertzberg VS. Potential role of the gut microbiome in ALS: a systematic review. Biol Res Nurs. 2018;20(5):513-21. https://doi.org/10.1177/1099800418784202
43. Cai M, Yang EJ. Complementary and alternative medicine for treating amyotrophic lateral sclerosis: A narrative review. Integr Med Res. 2019;8(4):234-9. https://doi.org/10.1016/j.imr.2019.08.003
44. Nieves JW, Gennings C, Factor-Litvak P, Hupf J, Singleton J, Sharf V, et al. Association between dietary intake and function in amyotrophic lateral sclerosis. JAMA Neurol. 2016;73(12):1425-32. https://doi.org/10.1001/jamaneurol.2016.3401
45. Wills AM, Hubbard J, Macklin EA, Glass J, Tandan R, Simpson EP, et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet. 2014;383(9934):2065-72. https://doi.org/10.1016/S0140-6736(14)60222-1
46. Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab. 2016;5(5):317-20. https://doi.org/10.1016/j.molmet.2016.02.005
47. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021. https://doi.org/10.3390/nu9091021
48. Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, et al. World Gastroenterology Organisation Global Guidelines - Probiotics and Prebiotics. World Gastroenterology Organisation, 2017. 35p. https://doi.org/10.1097/MCG.0b013e3182549092
49. Maguire M, Maguire G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev Neurosci. 2019;30(2):179-201. https://doi.org/10.1515/revneuro-2018-0024
50. Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, et al. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci. 2020;14:428. https://doi.org/10.3389/fnins.2020.00428
51. Liscic RM, Alberici A, Cairns NJ, Romano M, Buratti E. From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline. Mol Neurodegener. 2020;15(1):31. https://doi.org/10.1186/s13024-020-00373-9
52. Sniffen JC, McFarland LV, Evans CT, Goldstein EJC. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS One. 2018;13(12):e0209205. https://doi.org/10.1371/journal.pone.0209205
53. Russo E, Giudici F, Fiorindi C, Ficari F, Scaringi S, Amedei A. immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front Immunol. 2019;10:2754. https://doi.org/10.3389/fimmu.2019.02754
54. Wang W, Zhao J, Gui W, Sun D, Dai H, Xiao L, et al. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease. Br J Pharmacol. 2018;175(3):469-84. https://doi.org/10.1111/bph.14095
55. Daruich A, Picard E, Boatright JH, Behar-Cohen F. Review: The bile acids urso- and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Mol Vis. 2019;25:610-24. PMCID: PMC6817734
56. Elia AE, Lalli S, Monsurrò MR, Sagnelli A, Taiello AC, Reggiori B, et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol. 2016;23(1):45-52. https://doi.org/10.1111/ene.12664
57. Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44:854-9. PMID:13592638
58. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407-15 https://doi.org/10.1056/NEJMoa1205037
59. Leshem A, Horesh N, Elinav E. Fecal Microbial Transplantation and its potential application in cardiometabolic syndrome. Front Immunol. 2019;10:1341. https://doi.org/10.3389/fimmu.2019.01341
60. Tilocca B, Pieroni L, Soggiu A, Britti D, Bonizzi L, Roncada P, et al. Gut-brain axis and neurodegeneration: state-of-the-art of meta-omics sciences for microbiota characterization. Int J Mol Sci. 2020;21(11):4045. https://doi.org/10.3390/ijms21114045
61. Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol. 2020;10:98. https://doi.org/10.3389/fcimb.2020.00098
62. Mandrioli J, Amedei A, Cammarota G, Niccolai E, Zucchi E, D'Amico R, et al. FETR-ALS Study Protocol: A randomized clinical trial of fecal microbiota transplantation in amyotrophic lateral sclerosis. Front Neurol. 2019;10:1021. https://doi.org/10.3389/fneur.2019.01021