Metabolic syndrome in women with breast cancer: scope review
Main Article Content
Abstract
Objective: To synthesize evidence involving pathophysiological and clinical-epidemiological linking mechanisms in women with breast cancer and metabolic syndrome. Method: This is a structured scoping review according to the Joanna Briggs Institute and was conducted in the PubMed, BDENF, LILACS, IBECS, CUMED, WPRIM, BINACIS, and Embase databases. This review is registered in the Open Science Framework. Result: Regarding the level of evidence of the included studies, moderate and strong evidence levels were predominant. There were no weak evidence findings in this research. The chronic inflammatory state of breast adipose tissue in patients with obesity can worsen the negative impact on cancer cells, directly affecting survival and recurrence. Unexplained weight gain or loss is associated with shorter survival in women with breast cancer, highlighting the need for specific guidance during treatment. Conclusion: Metabolic syndrome is associated with the risk of breast cancer; however, massive weight loss during active disease can be associated with a worse prognosis and should therefore be prevented. Patients should be advised to maintain a stable weight during chemotherapy and to receive guidance on adequate nutrition and physical activity to increase muscle mass.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors maintain copyright and grant the HSJ the right to first publication. From 2024, the publications wiil be licensed under Attribution 4.0 International , allowing their sharing, recognizing the authorship and initial publication in this journal.
Authors are authorized to assume additional contracts separately for the non-exclusive distribution of the version of the work published in this journal (e.g., publishing in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal page) at any point after the editorial process.
Also, the AUTHOR is informed and consents that the HSJ can incorporate his article into existing or future scientific databases and indexers, under the conditions defined by the latter at all times, which will involve, at least, the possibility that the holders of these databases can perform the following actions on the article.
References
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-49. http://doi.org/10.3322/caac.21660.PMid:33538338. DOI: https://doi.org/10.3322/caac.21660
Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, et al. Global increase in breast cancer incidence: risk factors and preventive measures. BioMed Res Int 2022;2022:9605439. http://doi.org/10.1155/2022/9605439.PMid:35480139. DOI: https://doi.org/10.1155/2022/9605439
Mili N, Paschou SA, Goulis DG, Dimopoulos MA, Lambrinoudaki I, Psaltopoulou T. Obesity, metabolic syndrome, and cancer: pathophysiological and therapeutic associations. Endocrine 2021;74(3):478-97. http://doi.org/10.1007/s12020-021-02884-x.PMid:34625915. DOI: https://doi.org/10.1007/s12020-021-02884-x
Kabat GC, Kim MY, Lee JS, Ho GY, Going SB, Beebe-Dimmer J, et al. Metabolic obesity phenotypes and risk of breast câncer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 2017;26(12):1730-5. http://doi.org/10.1158/1055-9965.EPI-17-0495.PMid:28939589. DOI: https://doi.org/10.1158/1055-9965.EPI-17-0495
Peters MD, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Implement 2021;19(1):3-10. http://doi.org/10.1097/XEB.0000000000000277.PMid:33570328. DOI: https://doi.org/10.1097/XEB.0000000000000277
Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int 2018;121(Pt 1):1027-31. http://doi.org/10.1016/j.envint.2018.07.015.PMid:30166065. DOI: https://doi.org/10.1016/j.envint.2018.07.015
Melnyk BM, Ellen Fineout-Overholt E. Evidence - based practicein nursing & healthcare: a guide to best practice. 4th ed. Philadelphia; LWW; 2018.
Lopes-Júnior LC, Bomfim E, Olson K, Neves ET, Silveira DSC, Nunes MDR, et al. Effectiveness of hospital clowns for symptom management in paediatrics: systematic review of randomised and non-randomised controlled trials. BMJ 2020;371:m4290. http://doi.org/10.1136/bmj.m4290.PMid:33328164. DOI: https://doi.org/10.1136/bmj.m4290
Brown KA. Metabolic pathways in obesity-related breast cancer. Nat Rev Endocrinol 2021;17(6):350-63. http://doi.org/10.1038/s41574-021-00487-0.PMid:33927368. DOI: https://doi.org/10.1038/s41574-021-00487-0
Iwase T, Wang X, Shrimanker TV, Kolonin MG, Ueno NT. Body composition and breast cancer risk and treatment: mechanisms and impact. Breast Cancer Res Treat 2021;186(2):273-83. http://doi.org/10.1007/s10549-020-06092-5.PMid:33475878. DOI: https://doi.org/10.1007/s10549-020-06092-5
Fallone F, Deudon R, Muller C, Vaysse C. Cancer du sein, obésité et tissu adipeux. Med Sci (Paris) 2018;34(12):1079-86. http://doi.org/10.1051/medsci/2018298.PMid:30623763. DOI: https://doi.org/10.1051/medsci/2018298
Pang Y, Wei Y, Kartsonaki C. Associations of adiposity and weight change with recurrence and survival in breast cancer patients: a systematic review and meta-analysis. Breast Cancer 2022;29(4):575-88. http://doi.org/10.1007/s12282-022-01355-z.PMid:35579841. DOI: https://doi.org/10.1007/s12282-022-01355-z
McTiernan A. Weight, physical activity and breast cancer survival. Proc Nutr Soc 2018;77(4):403-11. http://doi.org/10.1017/S0029665118000010.PMid:29478430. DOI: https://doi.org/10.1017/S0029665118000010
Ryu HH, Ahn SH, Kim SO, Kim JE, Kim JS, Ahn JH, et al. Comparison of metabolic changes after neoadjuvant endocrine and chemotherapy in ER-positive, HER2-negative breast cancer. Sci Rep 2021;11(1):10510. http://doi.org/10.1038/s41598-021-89651-0.PMid:34006898. DOI: https://doi.org/10.1038/s41598-021-89651-0
Martel S, Lambertini M, Agbor-Tarh D, Ponde NF, Gombos A, Paterson V, et al. Body mass index and weight change in patients with her2-positive early breast cancer: exploratory analysis of the ALTTO BIG 2-06 trial. J Natl Compr Canc Netw 2021;19(2):181-9. http://doi.org/10.6004/jnccn.2020.7606.PMid:33401235. DOI: https://doi.org/10.6004/jnccn.2020.7606
Chan DSM, Vieira R, Abar L, Aune D, Balducci K, Cariolou M, et al. Postdiagnosis body fatness, weight change and breast cancer prognosis: Global Cancer Update Program (CUP global) systematic literature review and meta‐analysis. Int J Cancer 2023;152(4):572-99. http://doi.org/10.1002/ijc.34322.PMid:36279884. DOI: https://doi.org/10.1002/ijc.34322
Becerril-Alarcón Y, Campos-Gómez S, Valdez-Andrade JJ, Campos-Gómez KA, Reyes-Barretero DY, Benítez-Arciniega AD, et al. Inulin supplementation reduces systolic blood pressure in women with breast cancer undergoing neoadjuvant chemotherapy. Cardiovasc Ther 2019;2019:5707150. http://doi.org/10.1155/2019/5707150.PMid:31772611. DOI: https://doi.org/10.1155/2019/5707150
Ginzac A, Thivat É, Mouret-Reynier MA, Dubray-Longeras P, Van Praagh I, Passildas J, et al. Weight evolution during endocrine therapy for breast cancer in postmenopausal patients: effect of initial fat mass percentage and previous adjuvant treatments. Clin Breast Cancer 2018;18(5):e1093-102. http://doi.org/10.1016/j.clbc.2018.06.010.PMid:30417829. DOI: https://doi.org/10.1016/j.clbc.2018.06.010
Mutschler NS, Scholz C, Friedl TWP, Zwingers T, Fasching PA, Beckmann MW, et al. Prognostic impact of weight change during adjuvant chemotherapy in patients with high-risk early breast cancer: results from the ADEBAR study. Clin Breast Cancer 2018;18(2):175-83. http://doi.org/10.1016/j.clbc.2018.01.008.PMid:29598955. DOI: https://doi.org/10.1016/j.clbc.2018.01.008
Silva LM, Figueiredo JA No. Metabolic syndrome and risk of cardiovascular diseases in female breast cancer survivors. Int J Cardiovasc Sci. 2021;34(4):420-30. http://doi.org/10.36660/ijcs.20200411. DOI: https://doi.org/10.36660/ijcs.20200411
Zhao P, Xia N, Zhang H, Deng T. The metabolic syndrome is a risk factor for breast cancer: a systematic review and meta-analysis. Obes Facts 2020;13(4):384-96. http://doi.org/10.1159/000507554.PMid:32698183.
Yee LD, Mortimer JE, Natarajan R, Dietze EC, Seewaldt VL. Metabolic health, insulin, and breast cancer: why oncologists should care about insulin. Front Endocrinol (Lausanne) 2020;11:58. http://doi.org/10.3389/fendo.2020.00058.PMid:32153503. DOI: https://doi.org/10.3389/fendo.2020.00058
Kaul K, Misri S, Ramaswamy B, Ganju RK. Contribution of the tumor and obese microenvironment to triple negative breast cancer. Cancer Lett 2021;509:115-20. http://doi.org/10.1016/j.canlet.2021.03.024.PMid:33798632. DOI: https://doi.org/10.1016/j.canlet.2021.03.024
Lohmann AE, Soldera SV, Pimentel I, Ribnikar D, Ennis M, Amir E, et al. Association of obesity with breast cancer outcome in relation to cancer subtypes: a meta-analysis. J Natl Cancer Inst 2021;113(11):1465-75. http://doi.org/10.1093/jnci/djab023.PMid:33620467. DOI: https://doi.org/10.1093/jnci/djab023
Law M, Steward D, Pollock N, Lette L, Bosch J, Westmorland M. Guideline for critical review form quantitative studies [Internet]. Canadá: McMaster University Occupational Therapy Evidence-Based Practice Research Group; 1998 [cited 2024 Feb 17]. Available from: https://bit.ly/3EzQm0O
Liu S, Li Y, Yuan M, Song Q, Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol 2023;12:1060495. http://doi.org/10.3389/fonc.2022.1060495.PMid:36776368. DOI: https://doi.org/10.3389/fonc.2022.1060495
Icard P, Fournel L, Wu Z, Alifano M, Lincet H. Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci 2019;44(6):490-501. http://doi.org/10.1016/j.tibs.2018.12.007.PMid:30655165. DOI: https://doi.org/10.1016/j.tibs.2018.12.007
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 2019;20(7):436-50. http://doi.org/10.1038/s41580-019-0123-5.PMid:30976106. DOI: https://doi.org/10.1038/s41580-019-0123-5
Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 vesicle traffic: a cornerstone of insulin action. Trends Endocrinol Metab 2017;28(8):597-611. http://doi.org/10.1016/j.tem.2017.05.002.PMid:28602209. DOI: https://doi.org/10.1016/j.tem.2017.05.002
BioRender. [Internet]. 2024. [cited 2024 Feb 17]. Available from: BioRender.com
Goncalves MD, Hopkins BD, Cantley LC. Phosphatidylinositol 3-kinase, growth disorders, and cancer. N Engl J Med 2018;379(21):2052-62. http://doi.org/10.1056/NEJMra1704560.PMid:30462943. DOI: https://doi.org/10.1056/NEJMra1704560
Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab 2019;1(8):754-64. http://doi.org/10.1038/s42255-019-0095-y.PMid:32694767. DOI: https://doi.org/10.1038/s42255-019-0095-y
Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne) 2021;12:585887. http://doi.org/10.3389/fendo.2021.585887.PMid:34084149. DOI: https://doi.org/10.3389/fendo.2021.585887
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023;22(1):138. http://doi.org/10.1186/s12943-023-01827-6.PMid:37596643. DOI: https://doi.org/10.1186/s12943-023-01827-6
Zhao P, Xia N, Zhang H, Deng T. The metabolic syndrome is a risk factor for breast cancer: a systematic review and meta-analysis. Obes Facts. 2020;13(4):384-96. http://doi.org/10.1159/000507554.PMid:32698183. DOI: https://doi.org/10.1159/000507554