Síndrome metabólica em mulheres com câncer de mama: revisão de escopo
Conteúdo do artigo principal
Resumo
Objetivo: Sintetizar as principais evidências envolvendo os mecanismos de ligação fisiopatológico e clínico-epidemiológico em mulheres com câncer de mama e a síndrome metabólica. Método: Trata-se de uma revisão de escopo estruturada conforme o Instituto Joanna Briggs, realizado nas bases de dados PubMed, BDENF, LILACS, IBECS, CUMED, WPRIM, BINACIS e Embase. Esta revisão encontra-se protocolada no Open Science Framework. Resultado: Com relação ao nível de evidência dos estudos inclusos, houve predominância para níveis fortes de evidência. Não houve achados de evidência fraca nesta pesquisa. O estado inflamatório crônico do tecido adiposo mamário em casos de obesidade pode agravar o impacto negativo nas células cancerígenas, afetando diretamente a sobrevida e recorrência. Ganho ou perda de peso inexplicável estão associados a uma menor sobrevida em mulheres com câncer de mama, sublinhando a necessidade de orientações específicas durante o tratamento. Conclusão: A síndrome metabólica esta associada ao risco de câncer de mama, entretanto, a perda maciça de peso durante a doença ativa pode ser um fator de pior prognóstico, devendo assim, ser realizada de forma preventiva. Os pacientes devem ser orientados a manter um peso estável durante a quimioterapia e receber orientações sobre alimentação adequada e atividade física em busca de aumento de massa muscular.
Detalhes do artigo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores mantêm os direitos autorais e concedem ao HSJ o direito de primeira publicação. A partir de 2024, as publicações serão licenciadas sob a Attribution 4.0 International , permitindo seu compartilhamento, reconhecendo a autoria e publicação inicial nesta revista.
Os autores estão autorizados a assumir contratos adicionais separadamente para distribuição não exclusiva da versão do trabalho publicada nesta revista (por exemplo, publicação em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Os autores são incentivados a publicar e distribuir seu trabalho on-line (por exemplo, em repositórios institucionais ou em sua página pessoal) a qualquer momento após o processo editorial.
Além disso, o AUTOR fica informado e consente que o HSJ possa incorporar seu artigo em bases de dados e indexadores científicos existentes ou futuros, nas condições definidas por estes a cada momento, o que envolverá, pelo menos, a possibilidade de que os titulares de esses bancos de dados podem executar as seguintes ações no artigo.
Referências
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-49. http://doi.org/10.3322/caac.21660.PMid:33538338. DOI: https://doi.org/10.3322/caac.21660
Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, et al. Global increase in breast cancer incidence: risk factors and preventive measures. BioMed Res Int 2022;2022:9605439. http://doi.org/10.1155/2022/9605439.PMid:35480139. DOI: https://doi.org/10.1155/2022/9605439
Mili N, Paschou SA, Goulis DG, Dimopoulos MA, Lambrinoudaki I, Psaltopoulou T. Obesity, metabolic syndrome, and cancer: pathophysiological and therapeutic associations. Endocrine 2021;74(3):478-97. http://doi.org/10.1007/s12020-021-02884-x.PMid:34625915. DOI: https://doi.org/10.1007/s12020-021-02884-x
Kabat GC, Kim MY, Lee JS, Ho GY, Going SB, Beebe-Dimmer J, et al. Metabolic obesity phenotypes and risk of breast câncer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 2017;26(12):1730-5. http://doi.org/10.1158/1055-9965.EPI-17-0495.PMid:28939589. DOI: https://doi.org/10.1158/1055-9965.EPI-17-0495
Peters MD, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Implement 2021;19(1):3-10. http://doi.org/10.1097/XEB.0000000000000277.PMid:33570328. DOI: https://doi.org/10.1097/XEB.0000000000000277
Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int 2018;121(Pt 1):1027-31. http://doi.org/10.1016/j.envint.2018.07.015.PMid:30166065. DOI: https://doi.org/10.1016/j.envint.2018.07.015
Melnyk BM, Ellen Fineout-Overholt E. Evidence - based practicein nursing & healthcare: a guide to best practice. 4th ed. Philadelphia; LWW; 2018.
Lopes-Júnior LC, Bomfim E, Olson K, Neves ET, Silveira DSC, Nunes MDR, et al. Effectiveness of hospital clowns for symptom management in paediatrics: systematic review of randomised and non-randomised controlled trials. BMJ 2020;371:m4290. http://doi.org/10.1136/bmj.m4290.PMid:33328164. DOI: https://doi.org/10.1136/bmj.m4290
Brown KA. Metabolic pathways in obesity-related breast cancer. Nat Rev Endocrinol 2021;17(6):350-63. http://doi.org/10.1038/s41574-021-00487-0.PMid:33927368. DOI: https://doi.org/10.1038/s41574-021-00487-0
Iwase T, Wang X, Shrimanker TV, Kolonin MG, Ueno NT. Body composition and breast cancer risk and treatment: mechanisms and impact. Breast Cancer Res Treat 2021;186(2):273-83. http://doi.org/10.1007/s10549-020-06092-5.PMid:33475878. DOI: https://doi.org/10.1007/s10549-020-06092-5
Fallone F, Deudon R, Muller C, Vaysse C. Cancer du sein, obésité et tissu adipeux. Med Sci (Paris) 2018;34(12):1079-86. http://doi.org/10.1051/medsci/2018298.PMid:30623763. DOI: https://doi.org/10.1051/medsci/2018298
Pang Y, Wei Y, Kartsonaki C. Associations of adiposity and weight change with recurrence and survival in breast cancer patients: a systematic review and meta-analysis. Breast Cancer 2022;29(4):575-88. http://doi.org/10.1007/s12282-022-01355-z.PMid:35579841. DOI: https://doi.org/10.1007/s12282-022-01355-z
McTiernan A. Weight, physical activity and breast cancer survival. Proc Nutr Soc 2018;77(4):403-11. http://doi.org/10.1017/S0029665118000010.PMid:29478430. DOI: https://doi.org/10.1017/S0029665118000010
Ryu HH, Ahn SH, Kim SO, Kim JE, Kim JS, Ahn JH, et al. Comparison of metabolic changes after neoadjuvant endocrine and chemotherapy in ER-positive, HER2-negative breast cancer. Sci Rep 2021;11(1):10510. http://doi.org/10.1038/s41598-021-89651-0.PMid:34006898. DOI: https://doi.org/10.1038/s41598-021-89651-0
Martel S, Lambertini M, Agbor-Tarh D, Ponde NF, Gombos A, Paterson V, et al. Body mass index and weight change in patients with her2-positive early breast cancer: exploratory analysis of the ALTTO BIG 2-06 trial. J Natl Compr Canc Netw 2021;19(2):181-9. http://doi.org/10.6004/jnccn.2020.7606.PMid:33401235. DOI: https://doi.org/10.6004/jnccn.2020.7606
Chan DSM, Vieira R, Abar L, Aune D, Balducci K, Cariolou M, et al. Postdiagnosis body fatness, weight change and breast cancer prognosis: Global Cancer Update Program (CUP global) systematic literature review and meta‐analysis. Int J Cancer 2023;152(4):572-99. http://doi.org/10.1002/ijc.34322.PMid:36279884. DOI: https://doi.org/10.1002/ijc.34322
Becerril-Alarcón Y, Campos-Gómez S, Valdez-Andrade JJ, Campos-Gómez KA, Reyes-Barretero DY, Benítez-Arciniega AD, et al. Inulin supplementation reduces systolic blood pressure in women with breast cancer undergoing neoadjuvant chemotherapy. Cardiovasc Ther 2019;2019:5707150. http://doi.org/10.1155/2019/5707150.PMid:31772611. DOI: https://doi.org/10.1155/2019/5707150
Ginzac A, Thivat É, Mouret-Reynier MA, Dubray-Longeras P, Van Praagh I, Passildas J, et al. Weight evolution during endocrine therapy for breast cancer in postmenopausal patients: effect of initial fat mass percentage and previous adjuvant treatments. Clin Breast Cancer 2018;18(5):e1093-102. http://doi.org/10.1016/j.clbc.2018.06.010.PMid:30417829. DOI: https://doi.org/10.1016/j.clbc.2018.06.010
Mutschler NS, Scholz C, Friedl TWP, Zwingers T, Fasching PA, Beckmann MW, et al. Prognostic impact of weight change during adjuvant chemotherapy in patients with high-risk early breast cancer: results from the ADEBAR study. Clin Breast Cancer 2018;18(2):175-83. http://doi.org/10.1016/j.clbc.2018.01.008.PMid:29598955. DOI: https://doi.org/10.1016/j.clbc.2018.01.008
Silva LM, Figueiredo JA No. Metabolic syndrome and risk of cardiovascular diseases in female breast cancer survivors. Int J Cardiovasc Sci. 2021;34(4):420-30. http://doi.org/10.36660/ijcs.20200411. DOI: https://doi.org/10.36660/ijcs.20200411
Zhao P, Xia N, Zhang H, Deng T. The metabolic syndrome is a risk factor for breast cancer: a systematic review and meta-analysis. Obes Facts 2020;13(4):384-96. http://doi.org/10.1159/000507554.PMid:32698183.
Yee LD, Mortimer JE, Natarajan R, Dietze EC, Seewaldt VL. Metabolic health, insulin, and breast cancer: why oncologists should care about insulin. Front Endocrinol (Lausanne) 2020;11:58. http://doi.org/10.3389/fendo.2020.00058.PMid:32153503. DOI: https://doi.org/10.3389/fendo.2020.00058
Kaul K, Misri S, Ramaswamy B, Ganju RK. Contribution of the tumor and obese microenvironment to triple negative breast cancer. Cancer Lett 2021;509:115-20. http://doi.org/10.1016/j.canlet.2021.03.024.PMid:33798632. DOI: https://doi.org/10.1016/j.canlet.2021.03.024
Lohmann AE, Soldera SV, Pimentel I, Ribnikar D, Ennis M, Amir E, et al. Association of obesity with breast cancer outcome in relation to cancer subtypes: a meta-analysis. J Natl Cancer Inst 2021;113(11):1465-75. http://doi.org/10.1093/jnci/djab023.PMid:33620467. DOI: https://doi.org/10.1093/jnci/djab023
Law M, Steward D, Pollock N, Lette L, Bosch J, Westmorland M. Guideline for critical review form quantitative studies [Internet]. Canadá: McMaster University Occupational Therapy Evidence-Based Practice Research Group; 1998 [cited 2024 Feb 17]. Available from: https://bit.ly/3EzQm0O
Liu S, Li Y, Yuan M, Song Q, Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol 2023;12:1060495. http://doi.org/10.3389/fonc.2022.1060495.PMid:36776368. DOI: https://doi.org/10.3389/fonc.2022.1060495
Icard P, Fournel L, Wu Z, Alifano M, Lincet H. Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci 2019;44(6):490-501. http://doi.org/10.1016/j.tibs.2018.12.007.PMid:30655165. DOI: https://doi.org/10.1016/j.tibs.2018.12.007
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 2019;20(7):436-50. http://doi.org/10.1038/s41580-019-0123-5.PMid:30976106. DOI: https://doi.org/10.1038/s41580-019-0123-5
Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 vesicle traffic: a cornerstone of insulin action. Trends Endocrinol Metab 2017;28(8):597-611. http://doi.org/10.1016/j.tem.2017.05.002.PMid:28602209. DOI: https://doi.org/10.1016/j.tem.2017.05.002
BioRender. [Internet]. 2024. [cited 2024 Feb 17]. Available from: BioRender.com
Goncalves MD, Hopkins BD, Cantley LC. Phosphatidylinositol 3-kinase, growth disorders, and cancer. N Engl J Med 2018;379(21):2052-62. http://doi.org/10.1056/NEJMra1704560.PMid:30462943. DOI: https://doi.org/10.1056/NEJMra1704560
Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab 2019;1(8):754-64. http://doi.org/10.1038/s42255-019-0095-y.PMid:32694767. DOI: https://doi.org/10.1038/s42255-019-0095-y
Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne) 2021;12:585887. http://doi.org/10.3389/fendo.2021.585887.PMid:34084149. DOI: https://doi.org/10.3389/fendo.2021.585887
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023;22(1):138. http://doi.org/10.1186/s12943-023-01827-6.PMid:37596643. DOI: https://doi.org/10.1186/s12943-023-01827-6
Zhao P, Xia N, Zhang H, Deng T. The metabolic syndrome is a risk factor for breast cancer: a systematic review and meta-analysis. Obes Facts. 2020;13(4):384-96. http://doi.org/10.1159/000507554.PMid:32698183. DOI: https://doi.org/10.1159/000507554