Evaluation of different disinfection protocols for gutta-percha cones contaminated by microorganisms associated with improper handling by the professional
Main Article Content
Abstract
Objective: to evaluate the effectiveness of decontamination of different protocols for disinfection of gutta-percha cones contaminated by Staphylococcus aureus. Method: previously contaminated gutta-percha cones were submitted for contact with other disinfecting agents at different times. Subsequently, the protocols were evaluated for the growth of microorganisms by observing the color change of the medium contained in the tubes. A comparative qualitative analysis was performed to assess contamination differences between Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212. Result: In the qualitative study, no difference was observed regarding the contamination of gutta-percha cones by the microorganisms tested. All agents tested had their effectiveness over the decontamination action of gutta-percha cones contaminated in both exposure times. Conclusion: the Staphylococcus genus is the most frequently found after contamination due to the breakdown of the aseptic chain suggesting a bacterial model for experiments associated with contamination due to inadequate professional manipulation of dental materials. All the agents showed an effective decontamination action of contaminated gutta-percha.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors maintain copyright and grant the HSJ the right to first publication. From 2024, the publications wiil be licensed under Attribution 4.0 International , allowing their sharing, recognizing the authorship and initial publication in this journal.
Authors are authorized to assume additional contracts separately for the non-exclusive distribution of the version of the work published in this journal (e.g., publishing in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal page) at any point after the editorial process.
Also, the AUTHOR is informed and consents that the HSJ can incorporate his article into existing or future scientific databases and indexers, under the conditions defined by the latter at all times, which will involve, at least, the possibility that the holders of these databases can perform the following actions on the article.
References
Fransson H, Dawson V. Tooth survival after endodontic treatment. Int Endod J. 2023;56(Suppl 2):140-53. http://doi.org/10.1111/ iej.13835. PMid:36149887. DOI: https://doi.org/10.1111/iej.13835
Bergenholtz G. Assessment of treatment failure in endodontic therapy. J Oral Rehabil. 2016;43(10):753-8. http://doi. org/10.1111/joor.12423. PMid:27519460. DOI: https://doi.org/10.1111/joor.12423
Carvalho CS, Pinto MS, Batista SF, Quelemes PV, Falcão CA, Ferraz MA. Decontamination of gutta-percha cones employed in endodontics. Acta Odontol Latinoam. 2020;33(1):45-9. http:// doi.org/10.54589/aol.33/1/045. PMid:32621599.
Amaral G, Carraz R, Freitas L, Fidel S. Effectiveness of three solutions in disinfection of gutta-percha and resilon pellets. Rev Bras Odontol. 2013;70(1):54-8.
Prada I, Micó-Muñoz P, Giner-Lluesma T, Micó-Martínez P, Collado-Castellano N, Manzano-Saiz A. Influence of microbiology on endodontic failure. Literature review. Med Oral Patol Oral Cir Bucal. 2019;24(3):e364-72. http://doi.org/10.4317/ medoral.22907. PMid:31041915. DOI: https://doi.org/10.4317/medoral.22907
Alghamdi F, Shakir M. The influence of Enterococcus faecalis as a dental root canal pathogen on endodontic treatment: a systematic review. Cureus. 2020;12(3):e7257. http://doi. org/10.7759/cureus.7257. PMid:32292671. DOI: https://doi.org/10.7759/cureus.7257
Pinto KP, Barbosa AFA, Silva EJNL, Santos APP, Sassone LM. What is the microbial profile in persistent endodontic infections? A scoping review. J Endod. 2023;49(7):786-98.e7. http://doi. org/10.1016/j.joen.2023.05.010. PMid:37211309. DOI: https://doi.org/10.1016/j.joen.2023.05.010
Silva-Santana G, Cabral-Oliveira GG, Oliveira DR, Nogueira BA, Pereira-Ribeiro PMA, Mattos-Guaraldi AL. Staphylococcus aureus biofilm: an opportunistic pathogen with multidrug resistance. Rev Med Microbiol. 2021;32(1):12-21. http://doi.org/10.1097/ MRM.0000000000000223. DOI: https://doi.org/10.1097/MRM.0000000000000223
Barroso AP, Silva EJNL, Soares ECA, Anacleto FN, Prado MC, Guerisoli DMZ, et al. Microbiological analysis of sterile and nonsterile gloves before and during root canal treatment procedures. RSD. 2022;11(9):e41711932018. http://doi. org/10.33448/rsd-v11i9.32018. DOI: https://doi.org/10.33448/rsd-v11i9.32018
Gomes BP, Vianna ME, Matsumoto CU, Rossi VP, Zaia AA, Ferraz CC, et al. Desinfection of gutta-percha cones with chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(4):512-7. http://doi.org/10.1016/j. tripleo.2004.10.002. PMid:16182174. DOI: https://doi.org/10.1016/j.tripleo.2004.10.002
Pereira-Ribeiro PM, Sued-Karam BR, Faria YV, Nogueira BA, Colodette SS, Fracalanzza SE, et al. Influence of antibiotics on biofilm formation by different clones of nosocomial Staphylococcus haemolyticus. Future Microbiol. 2019;14(9):789- 99. http://doi.org/10.2217/fmb-2018-0230. PMid:31271299. DOI: https://doi.org/10.2217/fmb-2018-0230
Parlet CP, Brown MM, Horswill AR. Commensal Staphylococci influence Staphylococcus aureus skin colonization and disease. Trends Microbiol. 2019;27(6):497-507. http://doi.org/10.1016/j. tim.2019.01.008. PMid:30846311. DOI: https://doi.org/10.1016/j.tim.2019.01.008
Guedes MR, Medeiros PNF, Costa ML, Morais IS, Freitas JL, Aragão GLR, et al. Avaliação microbiológica de cones de guta-percha: estudo in vitro. Archives of Health Investigations. 2021;10(4):515-21. http://doi.org/10.21270/archi.v10i4.4772. DOI: https://doi.org/10.21270/archi.v10i4.4772
Mohammadi Z. Sodium hypochlorite in endodontics: an update review. Int Dent J. 2008;58(6):329-41. http://doi. org/10.1111/j.1875-595X.2008.tb00354.x. PMid:19145794. DOI: https://doi.org/10.1111/j.1875-595X.2008.tb00354.x
Marion JJC, Manhães FC, Bajo H, Duque TM. Efficiency of different concentrations of sodium hypochlorite during endodontic treatment. Literature review. Dental Press Endodontics. 2012;2(4):32-7.
Haapasalo M, Shen Y, Wang Z, Gao Y. Irrigation in endodontics. Br Dent J. 2014;216(6):299-303. http://doi.org/10.1038/sj.bdj.2014.204. PMid:24651335. DOI: https://doi.org/10.1038/sj.bdj.2014.204
Souza RE, Souza EA, Sousa-Neto MD, Pietro RC. In vitro evaluation of diferente chemical agentes for the decontamination of gutta-percha cones. Pesqui Odontol Bras. 2003;17(1):75-7. http://doi.org/10.1590/S1517-74912003000100014. PMid:12908064. DOI: https://doi.org/10.1590/S1517-74912003000100014
Gomes BP, Vianna ME, Zaia AA, Almeida JF, Souza-Filho FJ, Ferraz CC. Chlorhexidine in endodontics. Braz Dent J. 2013;24(2):89-102. http://doi.org/10.1590/0103-6440201302188. PMid:23780357. DOI: https://doi.org/10.1590/0103-6440201302188
Carvalho CS, Pinto MSC, Batista SF, Quelemes PV, Falcão CAM, Ferraz MAAL. Decontamination of gutta-percha cones employed in endodontics. Acta Odontol Latinoam. 2020;33(1):45-9. http://doi.org/10.54589/aol.33/1/045. PMid:32621599. DOI: https://doi.org/10.54589/aol.33/1/045