Nutritional management of muscle mass loss in patients with Post-COVID-19 Syndrome: a scoping review
Main Article Content
Abstract
Post-Covid-19 Syndrome (PCS) is a condition that causes persistent symptoms and impacts nutritional status such as loss of muscle mass. The objective of this study was to review and map scientific evidence on nutritional management in the loss of muscle mass in patients with PCS. The scoping review protocol was prepared following the PRISMA-ScR guidelines. Review articles not written in English or those that included only hospitalized patients and pertained to conditions other than PCS were excluded. Data extraction followed the methodology outlined by the Cochrane Review Group. Of the 81 articles initially identified, only five met the inclusion criteria. The selected studies emphasized the importance of recovering muscle mass, higher protein and caloric intake, and physical strength exercises. Consequently, nutritional interventions aimed at mitigating muscle mass loss should prioritize strategies that increase caloric and protein consumption.
Article Details
Authors maintain copyright and grant the HSJ the right to first publication. From 2024, the publications wiil be licensed under Attribution 4.0 International , allowing their sharing, recognizing the authorship and initial publication in this journal.
Authors are authorized to assume additional contracts separately for the non-exclusive distribution of the version of the work published in this journal (e.g., publishing in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal page) at any point after the editorial process.
Also, the AUTHOR is informed and consents that the HSJ can incorporate his article into existing or future scientific databases and indexers, under the conditions defined by the latter at all times, which will involve, at least, the possibility that the holders of these databases can perform the following actions on the article.
References
World Health Organization. Director General’s Opening remarks at the media briefing on COVID-19 [Internet]. Geneva: WHO; 2020 [cited 2023 May 10]. Available from: https://www.who.int/ director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
Umakanthan S, Sahu P, Ranade AV, Bukelo MM, Rao JS, Abrahao-Machado LF, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753-8. http://doi.org/10.1136/ postgradmedj-2020-138234. PMid:32563999.
Brasil. Ministério da Saúde. Coronavírus Brasil: painel geral [Internet]. Brasília; 2020 [cited 2023 May 16]. Available from: https://covid.saude.gov.br
Augustin M, Schommers P, Stecher M, Dewald F, Gieselmann L, Gruell H, et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. The Lancet Regional Health-Europe. 2021;6:100122. http://doi.org/10.1016/j.lanepe.2021.100122. PMid:34027514. DOI: https://doi.org/10.1016/j.lanepe.2021.100122
Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post-COVID-19 acute sarcopenia: physiopathology and management. Aging Clin Exp Res. 2021;33(10):2887-98. http://doi.org/10.1007/ s40520-021-01942-8. PMid:34328636. DOI: https://doi.org/10.1007/s40520-021-01942-8
Crispo A, Bimonte S, Porciello G, Forte CA, Cuomo G, Montagnese C, et al. Strategies to evaluate outcomes in long-COVID-19 and post-COVID survivors. Infect Agent Cancer. 2021;16(1):62. http://doi.org/10.1186/s13027-021-00401-3. PMid:34717691. DOI: https://doi.org/10.1186/s13027-021-00401-3
Cha C, Baek G. Symptoms and management of long COVID: a scoping review. J Clin Nurs. 2024;33(1):11-28. http://doi. org/10.1111/jocn.16150. PMid:34913540. DOI: https://doi.org/10.1111/jocn.16150
Scholkmann F, May C-A. COVID-19, post-acute COVID-19 syndrome (PACS,“long COVID”) and post-COVID-19 vaccination syndrome (PCVS,“post-COVIDvac-syndrome”): similarities and differences. Pathol Res Pract. 2023;246:154497. http:// doi.org/10.1016/j.prp.2023.154497. PMid:37192595. DOI: https://doi.org/10.1016/j.prp.2023.154497
Sandler CX, Wyller VB, Moss-Morris R, Buchwald D, Crawley E, Hautvast J, et al. Long COVID and post-infective fatigue syndrome: a review. Open Forum Infect Dis. 2021;8(10):ofab440. http://doi.org/10.1093/ofid/ofab440. PMid:34631916. DOI: https://doi.org/10.1093/ofid/ofab440
Rodriguez-Sanchez I, Rodriguez-Manãs L, Laosa O. Long COVID-19: the need for an interdisciplinary approach. Clin Res Rev. 2021;15(3):869-75. http://doi.org/10.1016/j. cger.2022.03.005.
Martone AM, Tosato M, Ciciarello F, Galluzzo V, Zazzara MB, Pais C, et al. Sarcopenia as a potential biological substrate of long COVID-19 syndrome: prevalence, clinical features, and risk factors. J Cachexia Sarcopenia Muscle. 2022;13(4):1974-82. http://doi.org/10.1002/jcsm.12931. PMid:35698920. DOI: https://doi.org/10.1002/jcsm.12931
Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32. http:// doi.org/10.1080/1364557032000119616. DOI: https://doi.org/10.1080/1364557032000119616
Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5(1):69. http://doi. org/10.1186/1748-5908-5-69. PMid:20854677. DOI: https://doi.org/10.1186/1748-5908-5-69
Cochrane Consumers and Communication. Data extraction template for included studies. Victoria: Cochrane; 2016. 25 p.
Deer RR, Hosein E, Harvey M, Nguyen T, Givan A, Hamilton M, et al. Impact of COVID-19 infection and persistent lingering symptoms on patient reported indicators of nutritional risk and malnutrition. Nutrients. 2022;14(3):642. http://doi.org/10.3390/ nu14030642. PMid:35277001. DOI: https://doi.org/10.3390/nu14030642
Gérard M, Mahmutovic M, Malgras A, Michot N, Scheyer N, Jaussaud R, et al. Long-term evolution of malnutrition and loss of muscle strength after COVID-19: a major and neglected component of long COVID-19. Nutrients. 2021;13(11):3964. http://doi.org/10.3390/nu13113964. PMid:34836219. DOI: https://doi.org/10.3390/nu13113964
Gobbi M, Brunani A, Arreghini M, Baccalaro G, Dellepiane D, La Vela V, et al. Nutritional status in post SARS-Cov2 rehabilitation patients. Clin Nutr. 2022;41(12):3055-60. http:// doi.org/10.1016/j.clnu.2021.04.013. PMid:34049750. DOI: https://doi.org/10.1016/j.clnu.2021.04.013
Rossato MS, Brilli E, Ferri N, Giordano G, Tarantino G. Observational study on the benefit of a nutritional supplement, supporting immune function and energy metabolism, on chronic fatigue associated with the SARS-CoV-2 post-infection progress. Clin Nutr ESPEN. 2021;46:510-8. http://doi.org/10.1016/j. clnesp.2021.08.031. PMid:34857243. DOI: https://doi.org/10.1016/j.clnesp.2021.08.031
Gobbi M, Bezzoli E, Ismelli F, Trotti G, Cortellezzi S, Meneguzzo F, et al. Skeletal muscle mass, sarcopenia and rehabilitation outcomes in post-acute COVID-19 patients. J Clin Med. 2021;10(23):5623. http://doi.org/10.3390/jcm10235623. PMid:34884325. DOI: https://doi.org/10.3390/jcm10235623
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin ligases at the heart of skeletal muscle atrophy control. Molecules. 2021;26(2):407. http://doi.org/10.3390/ molecules26020407. PMid:33466753. DOI: https://doi.org/10.3390/molecules26020407
Vainshtein A, Sandri M. Signaling pathways that control muscle mass. Int J Mol Sci. 2020;21(13):4759. http://doi.org/10.3390/ ijms21134759. PMid:32635462. DOI: https://doi.org/10.3390/ijms21134759
Nistor-Cseppento CD, Moga TD, Bungau AF, Tit DM, Negrut N, Pasca B, et al. The contribution of diet therapy and probiotics in the treatment of sarcopenia induced by prolonged immobilization caused by the COVID-19 pandemic. Nutrients. 2022;14(21):4701. http://doi.org/10.3390/nu14214701. PMid:36364963. DOI: https://doi.org/10.3390/nu14214701
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. http://doi. org/10.1093/ageing/afy169. PMid:30312372.
Dent E, Morley JE, Cruz-Jentoft AJ, Arai H, Kritchevsky SB, Guralnik J, et al. International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management. J Nutr Health Aging. 2018;22(10):1148-61. http://doi.org/10.1007/ s12603-018-1139-9. PMid:30498820. DOI: https://doi.org/10.1007/s12603-018-1139-9
González-Islas D, Sánchez-Moreno C, Orea-Tejeda A, Hernández- López S, Salgado-Fernández F, Keirns-Davis C, et al. Body composition and risk factors associated with sarcopenia in post- COVID patients after moderate or severe COVID-19 infections. BMC Pulm Med. 2022;22(1):223. http://doi.org/10.1186/ s12890-022-02014-x. PMid:35676657. DOI: https://doi.org/10.1186/s12890-022-02014-x
Morley JE, Kalantar-Zadeh K, Anker SD. COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020;11(4):863-5. http://doi.org/10.1002/jcsm.12589. PMid:32519505. DOI: https://doi.org/10.1002/jcsm.12589
Rogeri PS, Zanella R Jr, Martins GL, Garcia MD, Leite G, Lugaresi R, et al. Strategies to prevent sarcopenia in the aging process: role of protein intake and exercise. Nutrients. 2021;14(1):52. http://doi.org/10.3390/nu14010052. PMid:35010928. DOI: https://doi.org/10.3390/nu14010052
Di Filippo L, De Lorenzo R, D’Amico M, Sofia V, Roveri L, Mele R, et al. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalization: a post-hoc analysis of a prospective cohort study. Clin Nutr. 2021;40(4):2420-6. http://doi.org/10.1016/j.clnu.2020.10.043. PMid:33160700. DOI: https://doi.org/10.1016/j.clnu.2020.10.043
Akbarialiabad H, Taghrir MH, Abdollahi A, Ghahramani N, Kumar M, Paydar S, et al. Long COVID, a comprehensive systematic scoping review. Infection. 2021;49(6):1163. http:// doi.org/10.1007/s15010-021-01666-x. PMid:34319569. DOI: https://doi.org/10.1007/s15010-021-01666-x
Barrea L, Grant WB, Frias-Toral E, Vetrani C, Verde L, de Alteriis G, et al. Dietary recommendations for post-COVID-19 syndrome. Nutrients. 2022;14(6):1305. http://doi.org/10.3390/nu14061305. PMid:35334962. DOI: https://doi.org/10.3390/nu14061305
Ghanem J, Passadori A, Severac F, Dieterlen A, Geny B, Andrès E. Effects of Rehabilitation on Long-COVID-19 Patient’s Autonomy, Symptoms and Nutritional Observance. Nutrients. 2022;14(15):3027. http://doi.org/10.3390/nu14153027. PMid:35893881. DOI: https://doi.org/10.3390/nu14153027
Choi KM. Sarcopenia and sarcopenic obesity. Korean J Intern Med. 2016;31(6):1054-60. http://doi.org/10.3904/kjim.2016.193. PMid:27809450. DOI: https://doi.org/10.3904/kjim.2016.193
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the Cytokine Storm in COVID-19. J Infect. 2020;80(6):607-13. http:// doi.org/10.1016/j.jinf.2020.03.037. PMid:32283152. DOI: https://doi.org/10.1016/j.jinf.2020.03.037
Anker MS, Landmesser U, von Haehling S, Butler J, Coats AJ, Anker SD. Weight loss, malnutrition, and cachexia in COVID‐19: facts and numbers. J Cachexia Sarcopenia Muscle. 2021;12(1):9-13. http://doi.org/10.1002/jcsm.12674. PMid:33382211. DOI: https://doi.org/10.1002/jcsm.12674
Wang Y, Tan S, Yan Q, Gao Y. Sarcopenia and COVID-19 outcomes. Clin Interv Aging. 2023;18:359-73. http://doi.org/10.2147/CIA. S398386. PMid:36923269. DOI: https://doi.org/10.2147/CIA.S398386
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. http://doi. org/10.1093/ageing/afy169. PMid:30312372. DOI: https://doi.org/10.1093/ageing/afz046
Vaillant MF, Agier L, Martineau C, Philipponneau M, Romand D, Masdoua V, et al. Food intake and weight loss of surviving inpatients in the course of COVID-19 infection: A longitudinal study of the multicenter NutriCoviD30 cohort. Nutrition. 2022;93:111433. http://doi.org/10.1016/j.nut.2021.111433. PMid:34482098. DOI: https://doi.org/10.1016/j.nut.2021.111433
Thoma A, Akter-Miah T, Reade RL, Lightfoot AP. Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Biogerontology. 2020;21(4):475-84. http:// doi.org/10.1007/s10522-020-09883-x. PMid:32447556. DOI: https://doi.org/10.1007/s10522-020-09883-x
Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros- Pomar MD, Batsis JA, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes Facts. 2022;15(3):321-35. http://doi.org/10.1159/000521241. PMid:35196654. DOI: https://doi.org/10.1159/000521241
Gualtieri P, Falcone C, Romano L, Macheda S, Correale P, Arciello P, et al. Body composition findings by computed tomography in SARS-CoV-2 patients: increased risk of muscle wasting in obesity. Int J Mol Sci. 2020;21(13):4670. http://doi.org/10.3390/ ijms21134670. PMid:32630032. DOI: https://doi.org/10.3390/ijms21134670
Hoyois A, Ballarin A, Thomas J, Lheureux O, Preiser JC, Coppens E, et al. Nutrition evaluation and management of critically ill patients with COVID‐19 during post–intensive care rehabilitation. JPEN J Parenter Enteral Nutr. 2021;45(6):1153- 63. http://doi.org/10.1002/jpen.2101. PMid:33666263. DOI: https://doi.org/10.1002/jpen.2101
Cardon-Thomas DK, Riviere T, Tieges Z, Greig CA. Dietary protein in older adults: adequate daily intake but potential for improved distribution. Nutrients. 2017;9(3):184. http:// doi.org/10.3390/nu9030184. PMid:28241469. DOI: https://doi.org/10.3390/nu9030184
Wang PY, Li Y, Wang Q. Sarcopenia: an underlying treatment target during the COVID-19 pandemic. Nutrition. 2021;84:111104. http://doi.org/10.1016/j.nut.2020.111104. PMid:33421827. DOI: https://doi.org/10.1016/j.nut.2020.111104
Maiorino MI, Bellastella G, Longo M, Caruso P, Esposito K. Mediterranean diet and COVID-19: hypothesizing potential benefits in people with diabetes. Front Endocrinol. 2020;11:574315. http://doi.org/10.3389/fendo.2020.574315. PMid:33042027. DOI: https://doi.org/10.3389/fendo.2020.574315
Papadopoulou SK, Detopoulou P, Voulgaridou G, Tsoumana D, Spanoudaki M, Sadikou F, et al. Mediterranean diet and sarcopenia features in apparently healthy adults over 65 years: a systematic review. Nutrients. 2023;15(5):1104. http://doi. org/10.3390/nu15051104. PMid:36904104. DOI: https://doi.org/10.3390/nu15051104
Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020;39(6):1631-8. http://doi.org/10.1016/j. clnu.2020.03.022. PMid:32305181. DOI: https://doi.org/10.1016/j.clnu.2020.03.022
Bauer J, Morley JE, Schols AMWJ, Ferrucci L, Cruz-Jentoft AJ, Dent E, et al. Sarcopenia: a time for action. An SCWD position paper. J Cachexia Sarcopenia Muscle. 2019;10(5):956-61. http:// doi.org/10.1002/jcsm.12483. PMid:31523937. DOI: https://doi.org/10.1002/jcsm.12483
Barrea L, Muscogiuri G, Frias-Toral E, Laudisio D, Pugliese G, Castellucci B, et al. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. Crit Rev Food Sci Nutr. 2021;61(18):3066-90. http:// doi.org/10.1080/10408398.2020.1792826. PMid:32691606. DOI: https://doi.org/10.1080/10408398.2020.1792826
Venegas-Borsellino C, Sankararaman S, Roche K, Burns J, Landis RM. Impact of COVID-19 on the intestinal microbiome. Curr Nutr Rep. 2021;10(4):300-6. http://doi.org/10.1007/s13668- 021-00375-z. PMid:34813042. DOI: https://doi.org/10.1007/s13668-021-00375-z
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911-30. http:// doi.org/10.1210/jc.2011-0385. PMid:21646368. DOI: https://doi.org/10.1210/jc.2011-0385
Dissanayake HA, Silva NL, Sumanatilleke M, Silva SDN, Gamage KKK, Dematapitiya C, et al. Prognostic and therapeutic role of vitamin D in COVID-19: systematic review and meta-analysis. J Clin Endocrinol Metab. 2022;107(5):1484-502. http://doi. org/10.1210/clinem/dgab892. PMid:34894254. DOI: https://doi.org/10.1210/clinem/dgab892