Revisão sistemática dos estudos bibliométricos sobre SARS-CoV-2
Conteúdo do artigo principal
Resumo
Objetivo: Realizar uma revisão sistemática de artigos que avaliaram a produção científica sobre SARS-CoV-2 por meio de análises bibliométricas. Métodos: Foram utilizados os bancos de dados Scopus, Web of Science e Google Scholar. Após a aplicação dos critérios de inclusão pré-estabelecidos, 30 artigos foram incluídos. Resultados. A quantidade total de artigos encontrados nos estudos bibliométricos sobre SARS-CoV-2 apresentou uma grande variação de 153 a 21.395 artigos e uma média igual a 4.279 (± 5.510). Um total de 17 países publicaram no escopo deste estudo, mas apenas seis publicaram mais de um artigo, com destaque para autores de instituições chinesas (17%). Scopus foi o banco de dados mais utilizado nos estudos bibliométricos (50%, n = 15). Os artigos usaram 72 palavras-chave diferentes com destaque para: COVID-19 (15%), SARS-CoV-2 (12%) e 2019-nCoV (9%).Conclusão. Estamos diante de um cenário sem precedentes de informações acerca do SARS-CoV-2 e isso tem exigido um esforço científico coletivo que se reflete na publicação diária de centenas de estudos (artigos, pré-impressões, guias clínicos, protocolos). Os métodos bibliométricos são sendo cada vez mais utilizados pela comunidade científica para sistematizar essas informações. Assim sendo, a revisão sistemática realizada nesse estudo permitiu fornecer uma visão geral da literatura bibliométrica sobre o vírus SARS-CoV-2.
Detalhes do artigo
Os autores mantêm os direitos autorais e concedem ao HSJ o direito de primeira publicação. A partir de 2024, as publicações serão licenciadas sob a Attribution 4.0 International , permitindo seu compartilhamento, reconhecendo a autoria e publicação inicial nesta revista.
Os autores estão autorizados a assumir contratos adicionais separadamente para distribuição não exclusiva da versão do trabalho publicada nesta revista (por exemplo, publicação em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Os autores são incentivados a publicar e distribuir seu trabalho on-line (por exemplo, em repositórios institucionais ou em sua página pessoal) a qualquer momento após o processo editorial.
Além disso, o AUTOR fica informado e consente que o HSJ possa incorporar seu artigo em bases de dados e indexadores científicos existentes ou futuros, nas condições definidas por estes a cada momento, o que envolverá, pelo menos, a possibilidade de que os titulares de esses bancos de dados podem executar as seguintes ações no artigo.
Referências
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–23. https://doi.org/10.1016/S0140-6736(20)30154-9 DOI: https://doi.org/10.1016/S0140-6736(20)30154-9
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207. https://doi.org/10.1056/NEJMoa2001316 DOI: https://doi.org/10.1056/NEJMoa2001316
Gorbalenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44. https://doi.org/10.1038/s41564-020-0695-z DOI: https://doi.org/10.1038/s41564-020-0695-z
PMid:32123347
Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020;92(5):522–8. https://doi.org/10.1002/jmv.25700 PMid:32027036 DOI: https://doi.org/10.1002/jmv.25700
Wong MC, Cregeen SJJ, Ajami NJ, Petrosino JF. Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. bioRxiv [preprint]. 2020;2013:2020.02.07.939207. https://doi.org/10.1101/2020.02.07.939207 DOI: https://doi.org/10.1101/2020.02.07.939207
Zhang L, Zhao W, Sun B, Huang Y, Glänzel W. How scientific research reacts to international public health emergencies: a global analysis of response patterns. Scientometrics. 2020;124(1):747–73. https://doi.org/10.1007/s11192-020-03531-4 PMid:32836522 DOI: https://doi.org/10.1007/s11192-020-03531-4
Rinaldi B, Rinaldi JP. Available evidence on risk factors associated with COVID-19’s poorer outcomes, worldwide and in Brazil. Rev Cienc Saude. 2020;10(2):80–9. https://doi.org/10.21876/rcshci.v10i2.985 DOI: https://doi.org/10.21876/rcshci.v10i2.985
Bar-Ilan J. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics. 2010;82(3):495–506. https://doi.org/10.1007/s11192-010-0185-9 DOI: https://doi.org/10.1007/s11192-010-0185-9
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMCID: PMC2707599 DOI: https://doi.org/10.1371/journal.pmed.1000097
Chahrour M, Assi S, Bejjani M, et al. A bibliometric analysis of Covid-19 research activity: A call for increased output. Cureus. 2020;12(3): e7357. https://doi.org/10.7759/cureus.7357 PMid: 32328369 DOI: https://doi.org/10.7759/cureus.7357
Hamidah I, Sriyono S, Hudha MN. A Bibliometric analysis of Covid-19 research using VOSviewer. Indon J Sci Technol [Internet]. 2020 [cited 2020 Sep 22];5(2):34-41. https://doi.org/10.17509/ijost.v5i2.24522 Avaiable from: https://ejournal.upi.edu/index.php/ijost/article/view/24522
Melo MC, Cabral ERM, Rolim ACA, et al. A bibliometric analysis of global researches at COVID-19: COVID-19 bibliometric analysis. Interam J Med Health. 2020;3:e202003019. https://doi.org/10.31005/iajmh.v3i0.88 DOI: https://doi.org/10.31005/iajmh.v3i0.88
Kumar K. Author productivity of COVID-19 research output globally: Testing Lotka's Law. SSRN [preprint]. 2020 Apr 6:1-15. http://dx.doi.org/10.2139/ssrn.3603889 DOI: https://doi.org/10.2139/ssrn.3603889
Dehghanbanadaki H, Seif F, Vahidi Y, et al. Bibliometric analysis of global scientific research on Coronavirus (COVID-19). Med J Islam Repub Iran [Internet]. 2020 [cited 2020 Sep 22];34:51. Avaiable from: http://mjiri.iums.ac.ir/article-1-6629-en.pdf
Lou J, Tian SJ, Niu SM, et al. Coronavirus disease 2019: a bibliometric analysis and review. Eur Rev Med Pharmacol Sci. 2020;24(6):3411-21. https://doi.org/10.26355/eurrev_202003_20712
Belli S, Mugnaini R, Baltà J, Abadal E. Coronavirus mapping in scientific publications: when science advances rapidly and collectively, is access to this knowledge open to society? Scientometrics. 2020;124:2661–85. https://doi.org/10.1007/s11192-020-03590-7 DOI: https://doi.org/10.1007/s11192-020-03590-7
Liu N, Chee ML, Niu C, et al. Coronavirus disease 2019 (COVID-19): an evidence map of medical literature. BMC Med Res Methodol. 2020;20:177. https://doi.org/10.1186/s12874-020-01059-y DOI: https://doi.org/10.1186/s12874-020-01059-y
Haghani M, Bliemer MCJ. Covid-19 pandemic and the unprecedented mobilisation of scholarly efforts prompted by a health crisis: Scientometric comparisons across SARS, MERS and 2019-nCov literature. bioRxiv [preprint]. 2020 Jun 1 [cited 2020 Sep 22];2006.00674. Available from: https://arxiv.org/abs/2006.00674 DOI: https://doi.org/10.1101/2020.05.31.126813
Pathak M. COVID-19 research in India: a quantitative analysis. Indian J Biochem Biophys. 2020;57(3):351–5. Available from: http://nopr.niscair.res.in/handle/123456789/54461
Kousha K, Thelwall M. COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts. Quant Sci Stud. 2020;1(3):1068-91. https://doi.org/10.1162/qss_a_00066 DOI: https://doi.org/10.1162/qss_a_00066
Fiesco-Sepúlveda KY, Serrano-Bermúdez LM. Contributions of Latin American researchers in the understanding of the novel coronavirus outbreak: a literature review. Peer J. 2020;8:e9332. https://doi.org/10.7717/peerj.9332 PMId: 32547890 DOI: https://doi.org/10.7717/peerj.9332
Hossain MM. Current status of global research on novel coronavirus disease (COVID-19): a bibliometric analysis and knowledge mapping [version 1; peer review: 2 approved with reservations]. F1000Research 2020;9:374. https://doi.org/10.12688/f1000research.23690.1 DOI: https://doi.org/10.12688/f1000research.23690.1
Torres-Salinas D. Daily growth rate of scientific production on Covid-19. Analysis in databases and open access repositories. El Profes Inform. 2020;29(2): e290215. https://doi.org/10.3145/epi.2020.mar.15 DOI: https://doi.org/10.3145/epi.2020.mar.15
Kirchhoff J, Mertens A, Scheufen M. Der Corona-Innovationswettlauf in der Wissenschaft: Eine Analyse der wissenschaftlichen Publikationen zur Bekämpfung der Corona-Pandemie und die Bedeutung für den Pharma-Standort Deutschland, IW-Report [Internet]. Köln: Institut der deutschen Wirtschaft (IW); 2020(17):30pp. Available from: http://hdl.handle.net/10419/216830
Hu YJ, Chen MM, Wang Q, et al. From SARS to COVID-19: A bibliometric study on emerging infectious diseases with natural language processing technologies. Research Square [preprint];2020 May 6 [cited 2020 Sep 22]. https://doi.org/10.21203/rs.3.rs-25354/v1 DOI: https://doi.org/10.21203/rs.3.rs-25354/v1
Helliwell JA, Bolton WS, Burke JR, Tiernan JP, Jayne DG, Chapman SJ. Global academic response to COVID-19: Cross-sectional study. medRxiv [preprint]. 2020 May 3 [cited 2020 Sep 22]. https://doi.org/10.1101/2020.04.27.20081414 DOI: https://doi.org/10.1101/2020.04.27.20081414
Latif S, Usman M, Manzoor S, et al. Leveraging data science to combat COVID-19: A comprehensive review. TechRxiv [preprint]. 2020 Apr 30 [cited 2020 Sep 22]. https://doi.org/10.36227/techrxiv.12212516.v1 DOI: https://doi.org/10.36227/techrxiv.12212516.v1
O’Brien N, Barboza-Palomino M, Ventura-León J, Caycho-Rodríguez T, Sandoval-Díaz JS, López-López W, et al. Coronavirus disease (COVID-19). A bibliometric analysis. Rev Chil Anest. 2020;49(3):408–15. https://doi.org/10.25237/revchilanestv49n03.020 DOI: https://doi.org/10.25237/revchilanestv49n03.020
Torres-Salinas D, Robinson-Garcia N, Castillo-Valdivieso PA. Open Access and Altmetrics in the pandemic age: Forescast analysis on COVID-19 related literature. BioRxiv [preprint]. 2020 Apr 26 [cited 2020 Sep 22]. https://doi.org/10.1101/2020.04.23.057307 DOI: https://doi.org/10.1101/2020.04.23.057307
Tran BX, Ha GH, Nguyen LH, et al. Studies of novel coronavirus disease 19 (COVID-19) pandemic: A global analysis of literature. Int J Environ Res Public Health. 2020;17(11):4095. https://doi.org/10.3390/ijerph17114095 DOI: https://doi.org/10.3390/ijerph17114095
Zhou Y, Chen L. Twenty-year span of global coronavirus research trends: a bibliometric analysis. In Int J Environ Res Public Health. 2020;17(9),3082. https://doi.org/10.3390/ijerph17093082 DOI: https://doi.org/10.3390/ijerph17093082
Haghani M, Bliemer MC, Goerlandt F, Li J. The scientific literature on Coronaviruses, COVID-19 and its associated safety-related research dimensions: A scientometric analysis and scoping review. Safety Sci. 2020;129:104806. https://doi.org/10.1016/j.ssci.2020.104806 DOI: https://doi.org/10.1016/j.ssci.2020.104806
Aguado-Cortés C, Castaño VM. Translational knowledge map of COVID-19. arXiv [preprint]. 2020 Mar 22 [cited 2020 Sep 22]:2003.10434. Avaiable from: https://arxiv.org/abs/2003.10434
Gori AD, Boetto E, Fantini MP. Analysis of the scientific literature in the first 30 Days of the novel coronavirus outbreak. medRxiv [preprint]. 2020 Mar 30 [cited 2020 Sep 22]: 2020.03.25.20043315. https://doi.org/10.1101/2020.03.25.20043315 DOI: https://doi.org/10.1101/2020.03.25.20043315
Golinelli D, Nuzzolese AG, Boetto E, et al. The impact of early scientific literature in response to COVID-19: a scientometric perspective. medRxiv [preprint]. 2020 Apr 18 [cited 2020 Sep 22]. https://doi.org/10.1101/2020.04.15.20066183 DOI: https://doi.org/10.1101/2020.04.15.20066183
Kambhampati SB, Vaishya R, Vaish A. Unprecedented surge in publications related to COVID-19 in the first three months of pandemic: A bibliometric analytic report. J Clin Orthop Trauma. 2020;11(Suppl3):S304. https://doi.org/10.1016/j.jcot.2020.04.030 DOI: https://doi.org/10.1016/j.jcot.2020.04.030
Bhattacharya S, Singh S. Visible Insights of the Invisible Pandemic: A Scientometric, Altmetric and Topic Trend Analysis. arXiv [preprint]. 2020 Apr 22[cited 2020 Sep 22]:arXiv:2004.10878. Avaiable from: https://arxiv.org/abs/2004.10878
Zhang L, Li B, Jia P, et al. [An analysis of global research on SARS-CoV-2]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020;37(2):236-45. Chinese. https://doi.org/10.7507/1001-5515.202002034. PMID: 32329275.
Rathbone J, Carter M, Hoffmann T, Glasziou P. A comparison of the performance of seven key bibliographic databases in identifying all relevant systematic reviews of interventions for hypertension. Syst Rev. 2016;5:27. https://doi.org/10.1186/s13643-016-0197-5 PMID: 26862061 PMCID: PMC4748526 DOI: https://doi.org/10.1186/s13643-016-0197-5
Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic reviews a day: How will we ever keep up? PLoS Med. 2010;7(9):e1000326. https://doi.org/10.1371/journal.pmed.1000326 PMID:20877712 DOI: https://doi.org/10.1371/journal.pmed.1000326
Cavacini A. What is the best database for computer science journal articles? Scientometrics. 2015;102(3):2059–71. https://doi.org/10.1007/s11192-014-1506-1 DOI: https://doi.org/10.1007/s11192-014-1506-1
Freeman MK, Lauderdale SA, Kendrach MG, Woolley TW. Google scholar versus PubMed in locating primary literature to answer drug-related questions. Ann Pharmacother. 2009;43(3):478–84. https://doi.org/10.1345/aph.1L223 PMID:19261965 DOI: https://doi.org/10.1345/aph.1L223
Berg JM, Bhalla N, Bourne PE, et al. Preprints for the life sciences. Science. 2016;352(6288):899-901 https://doi.org/10.1126/science.aaf9133 DOI: https://doi.org/10.1126/science.aaf9133
Haustein S, Larivière V. The use of bibliometrics for assessing research: Possibilities, limitations and adverse effects. Incent Perform Gov Res Organ. 2015;121–39. https://crc.ebsi.umontreal.ca/files/sites/60/2015/10/HausteinLariviere_revised2.pdf DOI: https://doi.org/10.1007/978-3-319-09785-5_8
McKiernan EC, Schimanski LA, Muñoz Nieves C, Matthias L, Niles MT, Alperin JP. Meta Research: Use of the Journal Impact Factor in academic review, promotion, and tenure evaluations. Elife. 2019;8:e47338. https://doi.org/10.7554/eLife.47338 PMid:31364991 DOI: https://doi.org/10.7554/eLife.47338
Ellegaard O, Wallin JA. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics. 2015;105(3):1809–31. https://doi.org/10.1007/s11192-015-1645-z PMid:26594073 DOI: https://doi.org/10.1007/s11192-015-1645-z
Nabout J, Parreira MR, Teresa FB, Carneiro FM, Da Cunha HF, De Souza Ondei L, et al. Publish (In a group) or perish (alone): The trend from single- to multi-authorship in biological papers. Scientometrics. 2015;102(1):357–64. https://doi.org/10.1007/s11192-014-1385-5 DOI: https://doi.org/10.1007/s11192-014-1385-5
Scopus [Internet site]. Elsevier. 2020 [cited 2020 Jul 10]. Available from: https://service.elsevier.com/app/answers/detail/a_id/15534/supporthub/scopus/#tips
PubMed [Internet site]. National Center for Biotechnology Information. 2020 [cited 2020 Jul 10]. Available from: https://pubmed.ncbi.nlm.nih.gov/about/
Web of Science [Internet site]. Clarivate. 2020 [cited 2020 Jul 10]. Available from: https://clarivate.com/webofsciencegroup/solutions/web-of-science/