O papel anabólico das proteínas de origem vegetal em resposta ao exercício físico resistido crônico
Conteúdo do artigo principal
Resumo
A manutenção adequada da massa muscular esquelética é essencial para prevenir a sarcopenia e garantir a saúde e qualidade de vida à medida que se envelhece. Os dois determinantes da síntese de proteína muscular são o aumento de carga no músculo por meio do exercício físico resistido e a ingestão de proteínas. Para um resultado efetivo de manutenção ou aumento da massa muscular, deve-se considerar a ingestão quantitativa e adequada de proteína e a fonte alimentar, visto que a proteína de origem vegetal possui diferenças em comparação a animal que limitam sua capacidade anabólica. Em virtude do aumento do vegetarianismo e da população idosa, que consome menos alimentos fontes de proteína animal, justifica-se a importância de compreender como a proteína de origem vegetal pode sustentar em longo prazo a síntese de proteína muscular quando associada ao exercício físico resistido, bem como, as possibilidades de adequação dietética frente à esta demanda.
Detalhes do artigo
Os autores mantêm os direitos autorais e concedem ao HSJ o direito de primeira publicação. A partir de 2024, as publicações serão licenciadas sob a Attribution 4.0 International , permitindo seu compartilhamento, reconhecendo a autoria e publicação inicial nesta revista.
Os autores estão autorizados a assumir contratos adicionais separadamente para distribuição não exclusiva da versão do trabalho publicada nesta revista (por exemplo, publicação em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Os autores são incentivados a publicar e distribuir seu trabalho on-line (por exemplo, em repositórios institucionais ou em sua página pessoal) a qualquer momento após o processo editorial.
Além disso, o AUTOR fica informado e consente que o HSJ possa incorporar seu artigo em bases de dados e indexadores científicos existentes ou futuros, nas condições definidas por estes a cada momento, o que envolverá, pelo menos, a possibilidade de que os titulares de esses bancos de dados podem executar as seguintes ações no artigo.
Referências
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afy169 PMid:30312372 PMCid:PMC6322506 DOI: https://doi.org/10.1093/ageing/afy169
Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475-82. https://doi.org/10.1093/ajcn/84.3.475 PMid:16960159 DOI: https://doi.org/10.1093/ajcn/84.3.475
Prado CM, Purcell SA, Alish C, Pereira SL, Deutz NE, Heyland DK, et al. Implications of low muscle mass across the continuum of care: a narrative review. Ann Med. 2018;50(8):675-93. https://doi.org/10.1080/07853890.2018.1511918 PMid:30169116 PMCid:PMC6370503 DOI: https://doi.org/10.1080/07853890.2018.1511918
Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018;50(3):458-67. https://doi.org/10.1249/MSS.0000000000001448 PMid:28991040 PMCid:PMC5820209 DOI: https://doi.org/10.1249/MSS.0000000000001448
Santos CS, Nascimento FEL. Isolated branched-chain amino acid intake and muscle protein synthesis in humans: a biochemical review. einstein (São Paulo). 2019;17(3):eRB4898. https://doi.org/10.31744/einstein_journal/2019RB4898 PMid:31508659 PMCid:PMC6718193 DOI: https://doi.org/10.31744/einstein_journal/2019RB4898
Phillips SM. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutri Metab 2016;13(64):1-9. https://doi.org/10.1186/s12986-016-0124-8 PMid:27708684 PMCid:PMC5041535 DOI: https://doi.org/10.1186/s12986-016-0124-8
Brook MS, Wilkinson DJ, Smith K, Atherton PJ. It's not just about protein turnover: the role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy. Eur J Sport Sci. 2019;19(7):952-63. https://doi.org/10.1080/17461391.2019.1569726 PMid:30741116 DOI: https://doi.org/10.1080/17461391.2019.1569726
Berrazaga I, Micard V, Gueugneau M, Walrand S. The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients. 2019;11(8):1825. https://doi.org/10.3390/nu11081825 PMid:31394788 PMCid:PMC6723444 DOI: https://doi.org/10.3390/nu11081825
van Vliet S, Burd NA, van Loon LJ. The skeletal muscle anabolic response to plant-versus animal-based protein consumption. J Nutr. 2015;145(9):1981-91. https://doi.org/10.3945/jn.114.204305 PMid:26224750 DOI: https://doi.org/10.3945/jn.114.204305
IBGE. Projeção da População 2018: Agência IBGE Notícias; 2018 [cited 2021 Sep 07]. Available from: https://bit.ly/3hajmkw
Wall BT, Gorissen SH, Pennings B, Koopman R, Groen BB, Verdijk LB, et al. Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion. PloS One. 2015;10(11):e0140903. https://doi.org/10.1371/journal.pone.0140903 PMid:26536130 PMCid:PMC4633096 DOI: https://doi.org/10.1371/journal.pone.0140903
Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, et al. Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J. 2015;29(11):4485-96. https://doi.org/10.1096/fj.15-273755 PMid:26169934 DOI: https://doi.org/10.1096/fj.15-273755
Alexandrov NV, Eelderink C, Singh-Povel CM, Navis GJ, Bakker SJ, Corpeleijn E. Dietary protein sources and muscle mass over the life course: The Lifelines Cohort Study. Nutrients. 2018;10(10):1471. https://doi.org/10.3390/nu10101471 PMid:30308987 PMCid:PMC6212815 DOI: https://doi.org/10.3390/nu10101471
IBOPE. Pesquisa de opinião pública sobre vegetarianismo: Ibope inteligência; 2018 [cited 2021 Sep 7]. Available from: https://bit.ly/3z2cEmR
Hudson JL, Wang Y, Bergia III RE, Campbell WW. Protein Intake Greater than the RDA Differentially Influences Whole-Body Lean Mass Responses to Purposeful Catabolic and Anabolic Stressors: A Systematic Review and Meta-analysis. Adv Nutr. 2020;11(3):548-58. https://doi.org/10.1093/advances/nmz106 PMid:31794597 PMCid:PMC7231581 DOI: https://doi.org/10.1093/advances/nmz106
Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;14(20):1-25. https://doi.org/10.1186/s12970-017-0177-8 PMid:28642676 PMCid:PMC5477153 DOI: https://doi.org/10.1186/s12970-017-0177-8
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(38):1-57. https://doi.org/10.1186/s12970-018-0242-y PMid:30068354 PMCid:PMC6090881 DOI: https://doi.org/10.1186/s12970-018-0242-y
Hector AJ, Phillips SM. Protein recommendations for weight loss in elite athletes: A focus on body composition and performance. Int J Sport Nutr Exerc Metab. 2018;28(2):170-7. https://doi.org/10.1123/ijsnem.2017-0273 PMid:29182451 DOI: https://doi.org/10.1123/ijsnem.2017-0273
Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. 2013;591(11):2911-23. https://doi.org/10.1113/jphysiol.2013.253203 PMid:23551944 PMCid:PMC3690694 DOI: https://doi.org/10.1113/jphysiol.2013.253203
World Health Organization, Food and Agriculture Organization. Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation 1989. FAO Food and nutrition paper 51. Rome, Italy: FAO/UN; 1991 [cited 2021 Sep 7]. Avaiable from: https://bit.ly/3yTZI29
World Health Organization, Food and Agriculture Organization. Dietary protein quality evaluation in human nutrition: Report of the Joint FAO/WHO Expert Consultation 2011. Food and nutrition paper 92. Rome, Italy: FAO/UN; 2013 [cited 2021 Sep 7]. Avaiable from: https://bit.ly/3zRc0JZ
US Department of Agriculture, Agricultural Research Service. 2016. Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 28 (Slightly revised). Version Current: May 2016 [cited 2021 Sep 7]. Avaiable from: https://bit.ly/3BMz39m
Fouillet H, Juillet B, Gaudichon C, Mariotti F, Tomé D, Bos C. Absorption kinetics are a key factor regulating postprandial protein metabolism in response to qualitative and quantitative variations in protein intake. Am J Physiol Regul Integr Comp Physiol. 2009;297(6):R1691-R705. https://doi.org/10.1152/ajpregu.00281.2009 PMid:19812354 DOI: https://doi.org/10.1152/ajpregu.00281.2009
Bos C, Metges CC, Gaudichon C, Petzke KJ, Pueyo ME, Morens C, et al. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr. 2003;133(5):1308-15. https://doi.org/10.1093/jn/133.5.1308 PMid:12730415 DOI: https://doi.org/10.1093/jn/133.5.1308
Yang Y, Churchward-Venne TA, Burd NA, Breen L, Tarnopolsky MA, Phillips SM. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr Metab (Lond). 2012;9(1):57. https://doi.org/10.1186/1743-7075-9-57 PMid:22698458 PMCid:PMC3478988 DOI: https://doi.org/10.1186/1743-7075-9-57
Rutherfurd SM, Fanning AC, Miller BJ, Moughan PJ. Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. J Nutr 2015;145(2):372-9. https://doi.org/10.3945/jn.114.195438 PMid:25644361 DOI: https://doi.org/10.3945/jn.114.195438
Marinangeli CP, House JD. Potential impact of the digestible indispensable amino acid score as a measure of protein quality on dietary regulations and health. Nutr Rev. 2017;75(8):658-67. https://doi.org/10.1093/nutrit/nux025 PMid:28969364 PMCid:PMC5914309 DOI: https://doi.org/10.1093/nutrit/nux025
Hodgkinson SM, Montoya CA, Scholten PT, Rutherfurd SM, Moughan PJ. Cooking conditions affect the true ileal digestible amino acid content and digestible indispensable amino acid score (DIAAS) of bovine meat as determined in pigs. J Nutr. 2018;148(10):1564-9. https://doi.org/10.1093/jn/nxy153 PMid:30204886 DOI: https://doi.org/10.1093/jn/nxy153
Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376-84. https://doi.org/10.1136/bjsports-2017-097608 PMid:28698222 PMCid:PMC5867436 DOI: https://doi.org/10.1136/bjsports-2017-097608
Mobley CB, Haun CT, Roberson PA, Mumford PW, Romero MA, Kephart WC, et al. Effects of whey, soy or leucine supplementation with 12 weeks of resistance training on strength, body composition, and skeletal muscle and adipose tissue histological attributes in college-aged males. Nutrients. 2017;9(9):972. https://doi.org/10.3390/nu9090972 PMid:28869573 PMCid:PMC5622732 DOI: https://doi.org/10.3390/nu9090972
Reidy PT, Borack MS, Markofski MM, Dickinson JM, Deer RR, Husaini SH, et al. Protein supplementation has minimal effects on muscle adaptations during resistance exercise training in young men: a double-blind randomized clinical trial. J Nutr. 2016;146(9):1660-9.
https://doi.org/10.3945/jn.116.231803 PMid:27466602 PMCid:PMC4997282 DOI: https://doi.org/10.3945/jn.116.231803
Kim PL, Staron RS, Phillips SM. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol. 2005;568(Pt 1):283-90. https://doi.org/10.1113/jphysiol.2005.093708 PMid:16051622 PMCid:PMC1474760 DOI: https://doi.org/10.1113/jphysiol.2005.093708
Messina M, Lynch H, Dickinson JM, Reed KE. No difference between the effects of supplementing with soy protein versus animal protein on gains in muscle mass and strength in response to resistance exercise. Int J Sport Nutr Exerc Metab. 2018; 28(6):674-85. https://doi.org/10.1123/ijsnem.2018-0071 PMid:29722584 DOI: https://doi.org/10.1123/ijsnem.2018-0071
Lim MT, Pan BJ, Toh DWK, Sutanto CN, Kim JE. Animal protein versus plant protein in supporting lean mass and muscle strength: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2021;13(2):661. https://doi.org/10.3390/nu13020661 PMid:33670701 PMCid:PMC7926405 DOI: https://doi.org/10.3390/nu13020661
Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009;107(3):987-92. https://doi.org/10.1152/japplphysiol.00076.2009 PMid:19589961 DOI: https://doi.org/10.1152/japplphysiol.00076.2009
Wilkinson SB, Tarnopolsky MA, MacDonald MJ, MacDonald JR, Armstrong D, Phillips SM. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007;85(4):1031-40. https://doi.org/10.1093/ajcn/85.4.1031 PMid:17413102 DOI: https://doi.org/10.1093/ajcn/85.4.1031
Gorissen SH, Horstman AM, Franssen R, Crombag JJ, Langer H, Bierau J, et al. Ingestion of wheat protein increases in vivo muscle protein synthesis rates in healthy older men in a randomized trial. J Nutr. 2016;146(9):1651-9 https://doi.org/10.3945/jn.116.231340 PMid:27440260 DOI: https://doi.org/10.3945/jn.116.231340
Joy JM, Lowery RP, Wilson JM, Purpura M, de Souza EO, Wilson SM, et al. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr J. 2013;12:86. https://doi.org/10.1186/1475-2891-12-86 PMid:23782948 PMCid:PMC3698202 DOI: https://doi.org/10.1186/1475-2891-12-86
Hevia-Larraín V, Gualano B, Longobardi I, Gil S, Fernandes AL, Costa LAR, et al. High-protein plant-based diet versus a protein-matched omnivorous diet to support resistance training adaptations: a comparison between habitual vegans and omnivores. Sports Med. 2021;51(6):1317-30. https://doi.org/10.1007/s40279-021-01434-9 PMid:33599941 DOI: https://doi.org/10.1007/s40279-021-01434-9
Rogerson D. Vegan diets: practical advice for athletes and exercisers. J Int Soc Sports Nutr. 2017;14:36. https://doi.org/10.1186/s12970-017-0192-9 PMid:28924423 PMCid:PMC5598028 DOI: https://doi.org/10.1186/s12970-017-0192-9