A associação entre concentrações no vale de vancomicina e nefrotoxicidade em uma unidade de terapia intensiva pediátrica

Conteúdo do artigo principal

Alice Ramos Silva
Paula Pimenta-de-Souza
Carlos Roberto Pinheiro Neto
Daniel Andries Gigliotti
Michele Costa Caetano
Michelle Lima Soares
Cristina Sanches
Elisangela Costa Lima

Resumo

Objetivo: Analisar e descrever os aspectos farmacocinéticos do uso de vancomicina em uma coorte de crianças sob cuidados intensivos e elaborar um modelo farmacocinético para essa população. Método: Estudo observacional em uma unidade de terapia intensiva pediátrica conduzido entre setembro de 2017 a março de 2019. Inclui-se crianças em uso de vancomicina com pelo menos uma mensuração sérica desse antimicrobiano. As variáveis com valor de p < 0,2 na análise univariada e com plausibilidade biológica para propiciar nefrotoxicidade, não correlacionadas com outras preditoras, foram incluídas na regressão logística. Adicionalmente, uma modelagem farmacocinética foi realizada usando o programa PMETRICS® para pacientes com clearance de creatinina (CLCR) > 30 mL/min. Resultado: Foram incluídas 70 crianças no estudo. A dose média de vancomicina foi de 60 mg/kg/dia. Apenas onze crianças apresentaram vancocinemia dentro da faixa alvo (15-20 mg/L). Não foram observadas diferenças significativas entre as doses administradas e a observação de vancocinemia acima, dentro ou abaixo da faixa preconizada. No modelo multivariado, crianças acima da faixa sérica preconizada apresentaram odd ratio de 4,6 [IC 95% 1,4 – 17,2] para nefrotoxicidade. Um modelo farmacocinético com os dados de 15 crianças foi proposto, no qual os parâmetros de PK estimados para CLCR e Volume de distribuição foram de 0,94 L/h e 5,71 L, respectivamente. Conclusão: A nefrotoxicidade mostrou-se associada às concentrações plasmáticas de vancomicina iguais ou maiores a 15 mg/L. O modelo desenvolvido permitiu entender o comportamento do fármaco nessa população e pode ser útil na prática clínica para o monitoramento do uso de vancomicina.



Detalhes do artigo

Como Citar
1.
Ramos Silva A, Pimenta-de-Souza P, Pinheiro Neto CR, Andries Gigliotti D, Costa Caetano M, Lima Soares M, et al. A associação entre concentrações no vale de vancomicina e nefrotoxicidade em uma unidade de terapia intensiva pediátrica. HSJ [Internet]. 3º de maio de 2024 [citado 28º de novembro de 2024];14(1):e1470. Disponível em: https://portalrcs.hcitajuba.org.br/index.php/rcsfmit_zero/article/view/hsjhci.v14.2024.e1470
Seção
ARTIGO ORIGINAL

Referências

Porto APM, Goossens H, Versporten A, Costa SF. Global point prevalence survey of antimicrobial consumption in Brazilian hospitals. J Hosp Infect. 2020;104(2):165-71. http://doi.org/10.1016/j.jhin.2019.10.016. PMid:31678430. DOI: https://doi.org/10.1016/j.jhin.2019.10.016

Araujo da Silva AR, Jaszkowski E, Schober T, von Both U, Meyer-Buehn M, Marques AF, et al. Patterns of antimicrobial consumption in neonatal and pediatric intensive care units in Germany and Brazil. Eur J Clin Microbiol Infect Dis. 2020;39(2):249-55. http://doi.org/10.1007/s10096-019-03714-9. PMid:31673879. DOI: https://doi.org/10.1007/s10096-019-03714-9

Sridharan K, Abbasi MY, Mulubwa M. Population pharmacokinetics and dose optimization of vancomycin in critically Ill children. Eur J Drug Metab Pharmacokinet. 2021;46(4):539-46. http://doi.org/10.1007/s13318-021-00695-z. PMid:34156647. DOI: https://doi.org/10.1007/s13318-021-00695-z

Cao L, Li Z, Zhang P, Yong S. Relationship between vancomycin trough serum concentrations and clinical outcomes in children: a systematic review and meta-analysis. Antimicrob Agents Chemother. 2022;66(8):e00138-22. http://doi.org/10.1128/aac.00138-22. PMid:35862741. DOI: https://doi.org/10.1128/aac.00138-22

He N, Su S, Ye Z, Du G, He B, Li D, et al. Evidence-based Guideline for Therapeutic Drug Monitoring of Vancomycin: 2020 Update by the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Clin Infect Dis. 2020;71(Suppl 4):S363- 71. http://doi.org/10.1093/cid/ciaa1536. PMid:33367582. DOI: https://doi.org/10.1093/cid/ciaa1536

Filippone EJ, Kraft WK, Farber JL. The nephrotoxicity of vancomycin. Clin Pharmacol Ther. 2017;102(3):459-69. http:// doi.org/10.1002/cpt.726. PMid:28474732. DOI: https://doi.org/10.1002/cpt.726

Shah S, Barton G, Fischer A. Pharmacokinetic considerations and dosing strategies of antibiotics in the critically ill patient. J Intensive Care Soc. 2015;16(2):147-53. http://doi.org/10.1177/1751143714564816. PMid:28979397. DOI: https://doi.org/10.1177/1751143714564816

McNeil JC, Kaplan SL. Vancomycin therapeutic drug monitoring in children: new recommendations, similar challenges. J Pediatr Pharmacol Ther. 2020;25(6):472-5. http://doi.org/10.5863/1551-6776-25.6.472. PMid:32839650. DOI: https://doi.org/10.5863/1551-6776-25.6.472

Lee BV, Fong G, Bolaris M, Neely M, Minejima E, Kang A, et al. Cost-benefit analysis comparing trough, two-level AUC and Bayesian AUC dosing for vancomycin. Clin Microbiol Infect. 2021;27(9):1346.e1-7. http://doi.org/10.1016/j.cmi.2020.11.008. PMid:33221430. DOI: https://doi.org/10.1016/j.cmi.2020.11.008

Tsutsuura M, Moriyama H, Kojima N, Mizukami Y, Tashiro S, Osa S, et al. The monitoring of vancomycin: a systematic review and meta-analyses of area under the concentration-time curve-guided dosing and trough-guided dosing. BMC Infect Dis. 2021;21(1):153. http://doi.org/10.1186/s12879-021-05858-6. PMid:33549035. DOI: https://doi.org/10.1186/s12879-021-05858-6

Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835- 64. http://doi.org/10.1093/ajhp/zxaa036. PMid:32191793. DOI: https://doi.org/10.1093/ajhp/zxaa036

Zamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clin Exp Pharmacol Physiol. 2019;46(4):292-301. http://doi.org/10.1111/1440-1681.13066. PMid:30623980. DOI: https://doi.org/10.1111/1440-1681.13066

Chung E, Sen J, Patel P, Seto W. Population pharmacokinetic models of vancomycin in paediatric patients: a systematic review. Clin Pharmacokinet. 2021;60(8):985-1001. http://doi.org/10.1007/s40262-021-01027-9. PMid:34002357. DOI: https://doi.org/10.1007/s40262-021-01027-9

World Health Organization [Internet]. Geneva: WHO; 2023 [cited 2023 Aug 7]. Available from: https://www.who.int

Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC Jr, Craig WA, Billeter M, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the Infectious Diseases Society of America, the American Society of Health- System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2009;49(3):325-7. http://doi.org/10.1086/600877. PMid:19569969. DOI: https://doi.org/10.1086/600877

UpToDate. Lexicomp® Drug Interactions [Internet]. 2023 [cited 2023 Aug 10]. Available from: https://www.uptodate.com/drug-interactions/?source=responsive_home#di-druglist DOI: https://doi.org/10.1097/01.NPR.0000000000000019

Laboratory of Applied Pharmacokinetics and Bioinformatics. Pmetrics [Internet]. 2023 [cited 2023 Aug 10]. Available from: https://www.lapk.org/software.php

Feiten HDS, Okumura LM, Martinbiancho JK, Andreolio C, da Rocha TS, Antonacci Carvalho PR, et al. Vancomycin-associated nephrotoxicity and risk factors in critically Ill children without preexisting renal injury. Pediatr Infect Dis J. 2019;38(9):934-8. http://doi.org/10.1097/INF.0000000000002391. PMid:31232892. DOI: https://doi.org/10.1097/INF.0000000000002391

Chuphan C, Sukarnjanaset W, Puthanakit T, Wattanavijitkul T. Population pharmacokinetics and pharmacodynamics of vancomycin in pediatric patients with various degrees of renal function. J Pediatr Pharmacol Ther. 2022;27(5):419-27. http://doi.org/10.5863/1551-6776-27.5.419. PMid:35845555. DOI: https://doi.org/10.5863/1551-6776-27.5.419

Le J, Ny P, Capparelli E, Lane J, Ngu B, Muus R, et al. Pharmacodynamic characteristics of nephrotoxicity associated with vancomycin use in children. J Pediatric Infect Dis Soc. 2015;4(4):e109-16. http://doi.org/10.1093/jpids/piu110. PMid:26582878. DOI: https://doi.org/10.1093/jpids/piu110

Hill LF, Clements MN, Turner MA, Donà D, Lutsar I, Jacqz-Aigrain E, et al. Optimised versus standard dosing of vancomycin in infants with Gram-positive sepsis (NeoVanc): a multicentre, randomised, open-label, phase 2b, non-inferiority trial. Lancet Child Adolesc Health. 2022;6(1):49-59. http://doi.org/10.1016/S2352-4642(21)00305-9. PMid:34843669. DOI: https://doi.org/10.1016/S2352-4642(21)00305-9

Williams C, Hankinson C, McWilliam SJ, Oni L. Vancomycin-associated acute kidney injury epidemiology in children: a systematic review. Arch Dis Child. 2022;107(10):947. http://doi.org/10.1136/archdischild-2021-323429. PMid:35210220. DOI: https://doi.org/10.1136/archdischild-2021-323429

Ragab AR, Al-Mazroua MK, Al-Harony MA. Incidence and predisposing factors of vancomycin-induced nephrotoxicity in children. Infect Dis Ther. 2013;2(1):37-46. http://doi.org/10.1007/s40121-013-0004-8. PMid:25135822. DOI: https://doi.org/10.1007/s40121-013-0004-8

Alzahrani AM, Naeem A, Alzhrani RM, Harbi MA, Alghamdi SA, Karim S, et al. The Bayesian-based area under the curve of vancomycin by using a single trough level: an evaluation of accuracy and discordance at tertiary care hospital in KSA. Healthcare. 2023;11(3):362. http://doi.org/10.3390/healthcare11030362. PMid:36766937. DOI: https://doi.org/10.3390/healthcare11030362

Horey A, Mergenhagen KA, Mattappallil A. The Relationship of nephrotoxicity to vancomycin trough serum concentrations in a veteran’s population: a retrospective analysis. Ann Pharmacother. 2012;46(11):1477-83. http://doi.org/10.1345/aph.1R158. PMid:23073306. DOI: https://doi.org/10.1345/aph.1R158

Meaney CJ, Hynicka LM, Tsoukleris MG. Vancomycin-associated nephrotoxicity in adult medicine patients: incidence, outcomes, and risk factors. Pharmacotherapy. 2014;34(7):653-61. http://doi.org/10.1002/phar.1423. PMid:24700598. DOI: https://doi.org/10.1002/phar.1423

Maung NH, Methaneethorn J, Wattanavijitkul T, Sriboonruang T. Comparison of area under the curve for vancomycin from one-and two-compartment models using sparse data. Eur J Hosp Pharm Sci Pract. 2022;29(e1):e57-62. http://doi.org/10.1136/ejhpharm-2020-002637. PMid:34285111. DOI: https://doi.org/10.1136/ejhpharm-2020-002637

Akunne OO, Mugabo P, Argent AC. Pharmacokinetics of vancomycin in critically ill children: a systematic review. Eur J Drug Metab Pharmacokinet. 2022;47(1):31-48. http://doi.org/10.1007/s13318-021-00730-z. PMid:34750740. DOI: https://doi.org/10.1007/s13318-021-00730-z

Silveira ALO, Alves GCDS, Xie J, Roberts JA, Sanches C. Vancomycin population pharmacokinetic modeling in children using Bayesian estimation and a Non Parametric. Braz J Pharm Sci. 2022;58:e19313. http://doi.org/10.1590/s2175-97902020000x2e19313. DOI: https://doi.org/10.1590/s2175-97902020000x2e19313

Oliver MB, Boeser KD, Carlson MK, Hansen LA. Considerations for implementation of vancomycin Bayesian software monitoring in a level IV NICU population within a multisite health system. Am J Health Syst Pharm. 2023;80(11):670-7. http://doi.org/10.1093/ajhp/zxad048. PMid:36860169. DOI: https://doi.org/10.1093/ajhp/zxad048

Artigos mais lidos pelo mesmo(s) autor(es)