Immunotherapeutic perspectives for COVID-19
Main Article Content
Abstract
With the appearance of COVID-19, constant research on SARS-CoV-2 infection and its therapeutic prospects have begun. With an evident contribution of immunological activity to the pathogenesis of COVID-19, we highlight the main immunotherapeutic perspectives under its development. The involvement of neutrophilia and the formation of NETs (Neutrophil Extracellular Traps) is still being investigated as the clinical situation is worsening. One way to mitigate disease’s severity is by controlling neutrophil activity and the formation of NETs. Another way is to administer convalescent plasma or intravenous immunoglobulin (IgG) that can neutralize the entry of the virus into cells and modulate the immune response. However, the treatments are not yet definitive and lack favorable results.
Article Details
Authors maintain copyright and grant the HSJ the right to first publication. From 2024, the publications wiil be licensed under Attribution 4.0 International , allowing their sharing, recognizing the authorship and initial publication in this journal.
Authors are authorized to assume additional contracts separately for the non-exclusive distribution of the version of the work published in this journal (e.g., publishing in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal page) at any point after the editorial process.
Also, the AUTHOR is informed and consents that the HSJ can incorporate his article into existing or future scientific databases and indexers, under the conditions defined by the latter at all times, which will involve, at least, the possibility that the holders of these databases can perform the following actions on the article.
References
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20:363-74. https://doi.org/10.1038/s41577-020-0311-8 PMid:32346093 PMCid:PMC7187672
Junior DML, Santis GC, Bordin JO. COVID-19 convalescent plasma transfusion. Hematol Transfus Cell Ther. 2020;42(2):113-5. https://doi.org/10.1016/j.htct.2020.04.003 PMid:32313872 PMCid:PMC7164882
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with covid-19 with convalescent plasma. JAMA. 2020;323(16):1582-9. https://doi.org/10.1001/jama.2020.4783 PMid:32219428 PMCid:PMC7101507
Golonka RM, Saha P, Yeoh BS, et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics. 2020;52(5):217‐221. https://doi.org/10.1152/physiolgenomics.00033.2020 PMid:32275178
Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 2020;21(7):2272. https://doi.org/10.3390/ijms21072272 PMid:32218340 PMCid:PMC7178250
Ling L, Lianfeng Lu, Wei C, Taisheng L. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727‐32. https://doi.org/10.1080/22221751.2020.1746199 PMid:32196410 PMCid:PMC7170333
Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: a systematic review and meta-analysis. Rev Med Virol. 2020;e2141. https://doi.org/10.1002/rmv.2141
Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020;102452 https://doi.org/10.1016/j.jaut.2020.102452 PMid:32291137 PMCid:PMC7151347
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020;130(5):2620-9. https://doi.org/10.1172/JCI137244 PMid:32217835 PMCid:PMC7190990
Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020;395(10234):1407-9. https://doi.org/10.1016/S0140-6736(20)30858-8
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. https://doi.org/10.1084/jem.20200652 PMid:32302401 PMCid:PMC7161085
Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol. 2016;7:366. https://doi.org/10.3389/fimmu.2016.00366 PMid:27698656 PMCid:PMC5027205
Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. COVID-19: melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583. https://doi.org/10.1016/j.lfs.2020.117583 PMid:32217117 PMCid:PMC7102583