Osteometabolic changes in patients under antineoplastic treatment: scoping review

Main Article Content

Lucas Dalvi Armond Rezende
Davi de Souza Catabriga
Karielly Gasperazzo Pansini
Mateus Gonçalves Prata dos Reis
Paula de Souza Silva Freitas
https://orcid.org/0000-0001-9066-3286
Bruno Henrique Fiorin
https://orcid.org/0000-0002-1629-9233

Abstract

Objective: To summarize the main evidence regarding osteometabolic changes in patients undergoing antineoplastic treatment. Methods: This is a scoping review, following the methodology of the Joanna Briggs Institute, using PubMed/MedLine, Cochrane Library, LILACS, The British Library, and Google Scholar. This review is registered in the Open Science Framework. Results: Many antineoplastics affect bone architecture by reducing its density, such as selective estrogen receptor modulators, aromatase inhibitors, androgen deprivation therapy, and glucocorticoids. To avoid such outcomes, treatment and prevention can be achieved by calcium and vitamin D supplementation, physical exercise, use of bisphosphonates, denosumab, and selective estrogen receptor modulators. Conclusion: people at a higher risk of developing cancer also have a higher risk of osteopenia and osteoporosis when the process is already established and undergoing antineoplastic treatment because of the grouping of risk factors. The need for bone densitometry in patients undergoing cancer treatment to prevent and promote bone health in these patients is evident, in addition to more research with a high level of evidence to support such use.



Article Details

How to Cite
1.
Rezende LDA, Catabriga D de S, Pansini KG, Reis MGP dos, Freitas P de SS, Fiorin BH. Osteometabolic changes in patients under antineoplastic treatment: scoping review. Health Sci J [Internet]. 2023Sep.19 [cited 2024May10];13(3):56-5. Available from: https://portalrcs.hcitajuba.org.br/index.php/rcsfmit_zero/article/view/1442
Section
ORIGINAL ARTICLE
Author Biographies

Lucas Dalvi Armond Rezende, Federal University of Rio de Janeiro

Postgraduate Program in Medicine (Endocrinology), Health Sciences Center, Federal University of Rio de Janeiro.

Davi de Souza Catabriga, Santa Casa de Misericórdia de Vitória Superior School of Sciences

5th year medical student at Santa Casa de Misericórdia de Vitória Superior School of Sciences.

Karielly Gasperazzo Pansini, Santa Casa de Misericórdia de Vitória Superior School of Sciences

5th year medical student at Santa Casa de Misericórdia de Vitória Superior School of Sciences.

Mateus Gonçalves Prata dos Reis, Santa Casa de Misericórdia de Vitória Higher School of Sciences

5th year medical student at Santa Casa de Misericórdia de Vitória Superior School of Sciences.

Paula de Souza Silva Freitas, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES)

Nurse. Master and PhD in Public Health from the Federal University of Espírito Santo. Professor of the undergraduate Nursing course at the Federal University of Espírito Santo and professor of the Postgraduate Program in Nursing – Professional Master's at the Federal University of Espírito Santo.

Bruno Henrique Fiorin, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES).

Nurse. Master in Public Health from the Federal University of Espírito Santo and PhD in Health Sciences in the discipline of Cardiology from the Federal University of São Paulo (UNIFESP). Professor of the undergraduate Nursing course at the Federal University of Espírito Santo and professor of the Postgraduate Program in Nursing – Professional Master's at the Federal University of Espírito Santo.

References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Can Clin J. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660
2. Bedatsova L, Drake MT. The skeletal impact of cancer therapies. Br J Clin Pharmacol. 2019;85(6):1161-8. https://doi.org/10.1111/bcp.13866
3. Reuss-Borst M, Hartmann U, Scheede C, Weiß J. Prevalence of osteoporosis among cancer patients in Germany. Osteoporos Int. 2011;23(4):1437-44. https://doi.org/10.1007/s00198-011-1724-9
4. Park SH, Knobf MT, Sutton KM. Etiology, assessment, and management of aromatase inhibitor-related musculoskeletal symptoms. Clin J Oncol Nurs. 2012;16(3):260-6. https://doi.org/10.1188/12.CJON.260-266
5. Van Poznak C, Somerfield MR, Barlow WE et al. Role of bone-modifying agents in metastatic breast cancer: an american society of clinical oncology-cancer care ontario focused guideline update. J Clin Oncol. 2017;35(35):3978-86. https://doi.org/10.1200/JCO.2017.75.4614
6. Rachner TD, Coleman R, Hadji P, Hofbauer LC. Bone health during endocrine therapy for cancer. Lancet Diabetes Amp Endocrinol. 2018;6(11):901-10. https://doi.org/10.1016/S2213-8587(18)30047-0
7. Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int. 2018;121:1027-31. https://doi.org/10.1016/j.envint.2018.07.015
8. Melnyk BM, Ellen Fineout-Overholt E. Evidence-Based Practice in Nursing & Healthcare: A Guide to Best Practice (4th ed). LWW: Philadelphia, PA; 2018.
9. Lopes-Júnior LC, Bomfim E, Olson K, et al. Effectiveness of hospital clowns for symptom management in paediatrics: systematic review of randomised and non-randomised controlled trials. BMJ. 2020;371:m4290. https://doi.org/10.1136/bmj.m4290
10. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (Prisma-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467. https://doi.org/10.7326/M18-0850
11. Lopes-Júnior LC, Rosa MA, Lima RA. Psychological and psychiatric outcomes following PICU admission. Pediatr Crit Care Med. 2018;19(1):e58-67. https://doi.org/10.1097/PCC.0000000000001390
12. Casemiro LK, Lopes-Júnior LC, Jardim FA, Sulino MC, de Lima RA. Telehealth in outpatient care for children and adolescents with chronic conditions during the COVID-19 pandemic: a scoping review protocol. PLoS One. 2022;17(6):e0269821 https://doi.org/10.1371/journal.pone.0269821
13. Law M. Guideline for Critical Review Form - Quantitative Studies. McMaster University Occupational Therapy Evidence-Based Practice Research Group; Canadá.1998. Available from: https://bit.ly/3EzQm0O
14. El Badri S, Salawu A, Brown JE. Bone health in men with prostate cancer: review article. Curr Osteoporos Rep. 2019;17(6):527-37. https://doi.org/10.1007/s11914-019-00536-8
15. Liuhto N, Grönroos MH, Malila N, Madanat‐Harjuoja L, Matomäki J, Lähteenmäki P. Diseases of renal function and bone metabolism after treatment for early onset cancer: a registry‐based study. Int J Cancer. 2019;146(5):1324-32. https://doi.org/10.1002/ijc.32687
16. Owen PJ, Daly RM, Livingston PM, Fraser SF. Lifestyle guidelines for managing adverse effects on bone health and body composition in men treated with androgen deprivation therapy for prostate cancer: an update. Prostate Cancer Prostatic Dis. 2017;20(2):137-45. https://doi.org/10.1038/pcan.2016.69
17. Schyrr F, Wolfer A, Pasquier J, Nicoulaz AL, Lamy O, Naveiras O. Correlation study between osteoporosis and hematopoiesis in the context of adjuvant chemotherapy for breast cancer. Ann Hematol. 2017;97(2):309-17. https://doi.org/10.1007/s00277-017-3184-6
18. van Hellemond IEG, Smorenburg CH, Peer PGM, Swinkels ACP, Seynaeve CM, van der Sangen MJC, et al. Breast cancer outcome in relation to bone mineral density and bisphosphonate use: a sub-study of the DATA trial. Breast Cancer Res Treat. 2020;180(3):675-85. https://doi.org/10.1007/s10549-020-05567-9
19. Seland M, Smeland KB, Bjøro T, Falk RS, Fosså SD, Gjesdal CG, et al. Bone mineral density is close to normal for age in long-term lymphoma survivors treated with high-dose therapy with autologous stem cell transplantation. Acta Oncol. 2017;56(4):590-8. https://doi.org/10.1080/0284186X.2016.1267870
20. Sestak I, Blake GM, Patel R, Coleman RE, Cuzick J, Eastell R. Comparison of risedronate versus placebo in preventing anastrozole-induced bone loss in women at high risk of developing breast cancer with osteopenia. Bone. 2019;124:83-8. https://doi.org/10.1016/j.bone.2019.04.016
21. Castañeda S, Casas A, González-Del-Alba A, Martínez-Díaz-Guerra G, Nogués X, Ojeda Thies C, et al. Bone loss induced by cancer treatments in breast and prostate cancer patients. Clin Transl Oncol. 2022;24(11):2090-106. https://doi.org/10.1007/s12094-022-02872-1
22. Majithia N, Atherton PJ, Lafky JM, Wagner-Johnston N, Olson J, et al. Zoledronic acid for treatment of osteopenia and osteoporosis in women with primary breast cancer undergoing adjuvant aromatase inhibitor therapy: a 5-year follow-up. Support Care Cancer. 2015;24(3):1219-26. https://doi.org/10.1007/s00520-015-2915-2
23. Livi L, Scotti V, Desideri I, Saieva C, Cecchini S, Francolini G, et al. Phase 2 placebo-controlled, single-blind trial to evaluate the impact of oral ibandronate on bone mineral density in osteopenic breast cancer patients receiving adjuvant aromatase inhibitors: 5-year results of the single-centre BONADIUV trial. Eur J Cancer. 2019;108:100-110. https://doi.org/10.1016/j.ejca.2018.12.005
24. Harvey NC, Glüer CC, Binkley N et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216-24. https://doi.org/10.1016/j.bone.2015.05.016
25. Lane NE. Glucocorticoid-Induced osteoporosis: new insights into the pathophysiology and treatments. Curr Osteoporos Rep. 2019;17(1):1-7. https://doi.org/10.1007/s11914-019-00498-x
26. Smith MR, Fallon MA, Lee H, Finkelstein JS. Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J Clin Endocrinol Amp Metab. 2004;89(8):3841-6. https://doi.org/10.1210/jc.2003-032058
27. Gao Q, López-Knowles E, Cheang MC et al. Impact of aromatase inhibitor treatment on global gene expression and its association with antiproliferative response in ER+ breast cancer in postmenopausal patients. Breast Cancer Res. 2019;22(1):2. https://doi.org/10.1186/s13058-019-1223-z
28. Schyrr F, Wolfer A, Pasquier J, Nicoulaz AL, Lamy O, Naveiras O. Correlation study between osteoporosis and hematopoiesis in the context of adjuvant chemotherapy for breast cancer. Ann Hematol. 2017;97(2):309-17. https://doi.org/10.1007/s00277-017-3184-6
29. Paterson AH, Anderson SJ, Lembersky BC et al. Oral clodronate for adjuvant treatment of operable breast cancer (National Surgical Adjuvant Breast and Bowel Project protocol B-34): a multicentre, placebo-controlled, randomised trial. Lancet Oncol. 2012;13(7):734-42. https://doi.org/10.1016/S1470-2045(12)70226-7
30. EBCTCG (Early Breast Cancer Trialists' Collaborative Group). Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127-35. https://doi.org/10.1016/S0140-6736(14)60488-8
31. Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3, factorial trial. Lancet Oncol. 2019;20(2):267-81. https://doi.org/10.1016/S1470-2045(18)30757-5
32. Clarke BL. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. Yearb Med. 2010;2010:487-9. https://doi.org/10.1016/S0084-3873(10)79797-2