O papel do ferro e da ferritina na fisiopatologia e como marcador laboratorial na COVID-19

Conteúdo do artigo principal

Samira Costa Sampaio
https://orcid.org/0000-0002-3449-7401
Gabriel Santos Sacramento
https://orcid.org/0000-0002-9201-1545
Jessica Bomfim de Almeida
https://orcid.org/0000-0002-8016-734X

Resumo

O SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) surgiu na China, de maneira exponencial e foi reconhecida como uma doença multissistêmica que eleva gradativamente marcadores associados ao metabolismo do ferro à medida que a infecção se torna mais intensa, sendo fator chave na investigação de prognóstico. Analisamos as últimas descobertas científicas sobre o comportamento do ferro e da ferritina na fisiopatologia e como marcador laboratorial na COVID-19 (Coronavirus Disease 2019). As descobertas evidenciaram que o ferro e a ferritina tem papel chave na patogênese da COVID-19 contribuindo para o agravamento da doença. Portanto, o dismetabolismo do ferro, marcado pela hiperferritinemia, está associado a estados inflamatórios na infecção por SARS-CoV-2 e a dosagem de ferritina mostrou ser um marcador laboratorial útil, com um potencial clínico e discriminatório para definir a gravidade e mortalidade durante o curso do COVID-19.



Detalhes do artigo

Como Citar
1.
Sampaio SC, Sacramento GS, de Almeida JB. O papel do ferro e da ferritina na fisiopatologia e como marcador laboratorial na COVID-19. HSJ [Internet]. 29º de agosto de 2022 [citado 22º de novembro de 2024];12(3):12-21. Disponível em: https://portalrcs.hcitajuba.org.br/index.php/rcsfmit_zero/article/view/1275
Seção
REVISÃO NARRATIVA
Biografia do Autor

Samira Costa Sampaio, Universidade Federal da Bahia

Acadêmica do 10º semestre de Farmácia da Universidade Federal da Bahia, Campus Anísio Teixeira.

Gabriel Santos Sacramento, Universidade Federal da Bahia

Acadêmico do 6º semestre de Farmácia da Universidade Federal da Bahia, Campus Anísio Teixeira.

Jessica Bomfim de Almeida, Universidade Federal da Bahia

Doutora em Biologia e Biotecnologia de Microorganismos pela Universidade Estadual de Santa Cruz de Ilhéus - Bahia, Professora Adjunta de Farmácia da Universidade Federal da Bahia, Campus Anísio Teixeira.

Referências

Xu J, Ma XP, Bai L, Wang M, Deng W, Ning N. A systematic review of etiology, epidemiology, clinical manifestations, image findings, and medication of 2019 Corona Virus Disease-19 in Wuhan, China. Medicine. 2020;99(42):e22688. https://doi.org/10.1097/MD.0000000000022688 DOI: https://doi.org/10.1097/MD.0000000000022688

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. https://doi.org/10.1056/NEJMoa2001017 DOI: https://doi.org/10.1056/NEJMoa2001017

Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. https://doi.org/10.4081/cp.2020.1271 DOI: https://doi.org/10.4081/cp.2020.1271

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7 DOI: https://doi.org/10.1016/S0140-6736(20)30211-7

Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci. 2020;57(6):389-99. https://doi.org/10.1080/10408363.2020.1770685 DOI: https://doi.org/10.1080/10408363.2020.1770685

Lv Y, Chen L, Liang X, Liu X, Gao M, Wang Q, et al. Association between iron status and the risk of adverse outcomes in COVID-19. Clin Nutr. 2021;40(5):3462-9. https://doi.org/10.1016/j.clnu.2020.11.033 DOI: https://doi.org/10.1016/j.clnu.2020.11.033

Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500-10. https://doi.org/10.1038/nri3863 DOI: https://doi.org/10.1038/nri3863

Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29(9):401-9. https://doi.org/10.1093/intimm/dxx031 DOI: https://doi.org/10.1093/intimm/dxx031

Coffey R, Ganz T. Iron homeostasis: An anthropocentric perspective. J Biol Chem. 2017;292(31):12727-34. https://doi.org/10.1074/jbc.R117.781823 DOI: https://doi.org/10.1074/jbc.R117.781823

Girelli D, Marchi G, Busti F, Vianello A. Iron metabolism in infections: Focus on COVID-19. Semin Hematol. 2021;58(3):182-7. https://doi.org/10.1053/j.seminhematol.2021.07.001 DOI: https://doi.org/10.1053/j.seminhematol.2021.07.001

Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli GM, Shoenfeld Y, et al. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res. 2020;68(4):213-24. https://doi.org/10.1007/s12026-020-09145-5 DOI: https://doi.org/10.1007/s12026-020-09145-5

Ganz T. Iron and infection. Int J Hematol. 2018;107(1):7-15. https://doi.org/10.1007/s12185-017-2366-2 DOI: https://doi.org/10.1007/s12185-017-2366-2

Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30:105-22. https://doi.org/10.1146/annurev.nutr.012809.104804 DOI: https://doi.org/10.1146/annurev.nutr.012809.104804

Camaschella C. Iron deficiency: new insights into diagnosis and treatment. Hematology Am Soc Hematol Educ Program. 2015;2015:8-13. https://doi.org/10.1182/asheducation-2015.1.8 DOI: https://doi.org/10.1182/asheducation-2015.1.8

Wang CY, Babitt JL. Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol. 2016;23(3):189-97. https://doi.org/10.1097/MOH.0000000000000236 DOI: https://doi.org/10.1097/MOH.0000000000000236

Daher R, Manceau H, Karim Z. Iron metabolism and the role of the iron-regulating hormone hepcidin in health and disease. Presse Med. 2017;46(12 Pt 2):e272-e8. https://doi.org/10.1016/j.lpm.2017.10.006 DOI: https://doi.org/10.1016/j.lpm.2017.10.006

Polak SB, Van Gool IC, Cohen D, von der Thüsen JH, van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. 2020;33(11):2128-38. https://doi.org/10.1038/s41379-020-0603-3 DOI: https://doi.org/10.1038/s41379-020-0603-3

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. https://doi.org/10.1016/S0140-6736(20)30566-3 DOI: https://doi.org/10.1016/S0140-6736(20)30566-3

Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-4. https://doi.org/10.1038/s41586-020-2179-y DOI: https://doi.org/10.1038/s41586-020-2179-y

Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92(7):726-30. https://doi.org/10.1002/jmv.25785 DOI: https://doi.org/10.1002/jmv.25785

Murray E, Tomaszewski M, Guzik TJ. Binding of SARS-CoV-2 and angiotensin-converting enzyme 2: clinical implications. Cardiovasc Res. 2020;116(7):e87-e9. https://doi.org/10.1093/cvr/cvaa096 DOI: https://doi.org/10.1093/cvr/cvaa096

Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol. 2008;93(5):543-8. https://doi.org/10.1113/expphysiol.2007.040048 DOI: https://doi.org/10.1113/expphysiol.2007.040048

Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother. 2021;136:111228. https://doi.org/10.1016/j.biopha.2021.111228 DOI: https://doi.org/10.1016/j.biopha.2021.111228

Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. https://doi.org/10.1002/jmv.25685 DOI: https://doi.org/10.1002/jmv.25685

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infec. 2020;80(6):607-13. https://doi.org/10.1016/j.jinf.2020.03.037 DOI: https://doi.org/10.1016/j.jinf.2020.03.037

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. https://doi.org/10.1016/S0140-6736(20)30628-0 DOI: https://doi.org/10.1016/S0140-6736(20)30628-0

Liu W, Li HJCd. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. 2022 (Preprint). https://doi.org/10.26434/chemrxiv-2021-dtpv3-v11 DOI: https://doi.org/10.26434/chemrxiv-2021-dtpv3-v11

Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6(4):748-73. https://doi.org/10.1039/C3MT00347G DOI: https://doi.org/10.1039/C3MT00347G

Wenzhong L, Hualan L. COVID-19: captures iron and generates reactive oxygen species to damage the human immune system. Autoimmunity. 2021;54(4):213-24. https://doi.org/10.1080/08916934.2021.1913581 DOI: https://doi.org/10.26434/chemrxiv.13301372

Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108. https://doi.org/10.1016/j.biopha.2020.110108 DOI: https://doi.org/10.1016/j.biopha.2020.110108

Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020;130(7):1787. https://doi.org/10.1002/lary.28692 DOI: https://doi.org/10.1002/lary.28692

Temraz S, Santini V, Musallam K, Taher A. Iron overload and chelation therapy in myelodysplastic syndromes. Crit Rev Oncol Hematol. 2014;91(1):64-73. https://doi.org/10.1016/j.critrevonc.2014.01.006 DOI: https://doi.org/10.1016/j.critrevonc.2014.01.006

Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: Past, present and future. Biochim Biophys Acta. 2010;1800(8):760-9. https://doi.org/10.1016/j.bbagen.2010.03.011 DOI: https://doi.org/10.1016/j.bbagen.2010.03.011

Suchdev PS, Williams AM, Mei Z, Flores-Ayala R, Pasricha SR, Rogers LM, et al. Assessment of iron status in settings of inflammation: challenges and potential approaches. Am J Clin Nutr. 2017;106(Suppl 6):1626s-33s. https://doi.org/10.3945/ajcn.117.155937 DOI: https://doi.org/10.3945/ajcn.117.155937

Ruscitti P, Giacomelli R. Ferritin and Severe COVID-19, from clinical observations to pathogenic implications and therapeutic perspectives. Isr Med Assoc J. 2020;22(8):516-8. PMId:33236586

Gómez-Pastora J, Weigand M, Kim J, Wu X, Strayer J, Palmer AF, et al. Hyperferritinemia in critically ill COVID-19 patients - Is ferritin the product of inflammation or a pathogenic mediator? Clin Chim Acta. 2020;509:249-51. https://doi.org/10.1016/j.cca.2020.06.033 DOI: https://doi.org/10.1016/j.cca.2020.06.033

Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854-87. https://doi.org/10.1007/s00134-020-06022-5 DOI: https://doi.org/10.1007/s00134-020-06022-5

Banchini F, Cattaneo GM, Capelli P. Serum ferritin levels in inflammation: a retrospective comparative analysis between COVID-19 and emergency surgical non-COVID-19 patients. World J Emerg Surg. 2021;16(1):9. https://doi.org/10.1186/s13017-021-00354-3 DOI: https://doi.org/10.1186/s13017-021-00354-3

Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. J Clin Med. 2020;9(8):2429. https://doi.org/10.3390/jcm9082429 DOI: https://doi.org/10.3390/jcm9082429

Bolondi G, Russo E, Gamberini E, Circelli A, Meca MCC, Brogi E, et al. Iron metabolism and lymphocyte characterisation during Covid-19 infection in ICU patients: an observational cohort study. World J Emerg Surg. 2020;15(1):41. https://doi.org/10.1186/s13017-020-00323-2 DOI: https://doi.org/10.1186/s13017-020-00323-2

Dahan S, Segal G, Katz I, Hellou T, Tietel M, Bryk G, et al. Ferritin as a Marker of Severity in COVID-19 Patients: A Fatal Correlation. Isr Med Assoc J. 2020;22(8):494-500. PMId:33236582

Hippchen T, Altamura S, Muckenthaler MU, Merle U. Hypoferremia is associated with increased hospitalization and oxygen demand in COVID-19 patients. HemaSphere. 2020;4(6):e492. https://doi.org/10.1097/HS9.0000000000000492 DOI: https://doi.org/10.1097/HS9.0000000000000492

Sonnweber T, Boehm A, Sahanic S, Pizzini A, Aichner M, Sonnweber B, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients' performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. https://doi.org/10.1186/s12931-020-01546-2 DOI: https://doi.org/10.1186/s12931-020-01546-2

Tojo K, Sugawara Y, Oi Y, Ogawa F, Higurashi T, Yoshimura Y, et al. The U-shaped association of serum iron level with disease severity in adult hospitalized patients with COVID-19. Sci Rep. 2021;11(1):13431. https://doi.org/10.1038/s41598-021-92921-6 DOI: https://doi.org/10.1038/s41598-021-92921-6

Zhou C, Chen Y, Ji Y, He X, Xue D. Increased serum levels of hepcidin and ferritin are associated with severity of COVID-19. Med Sci Monit. 2020;26:e926178. https://doi.org/10.12659/MSM.926178 DOI: https://doi.org/10.12659/MSM.926178

Ahmed S, Ansar Ahmed Z, Siddiqui I, Haroon Rashid N, Mansoor M, Jafri L. Evaluation of serum ferritin for prediction of severity and mortality in COVID-19- A cross sectional study. Ann Med Surg. 2021;63:102163. https://doi.org/10.1016/j.amsu.2021.02.009 DOI: https://doi.org/10.1016/j.amsu.2021.02.009

Raman N, Kv P, Ashta KK, Vardhan V, Thareja S, J M, et al. Ferritin and hemoglobin as predictors of fatal outcome in COVID-19: two sides of the same coin. J Assoc Physicians India. 2021;69(8):11-2. PMId:34472812 DOI: https://doi.org/10.4103/jacp.jacp_44_21

Yağcı S, Serin E, Acicbe Ö, Zeren M, Odabaşı MS. The relationship between serum erythropoietin, hepcidin, and haptoglobin levels with disease severity and other biochemical values in patients with COVID-19. Int J Lab Hematol. 2021;43 Suppl 1(suppl 1):142-51. https://doi.org/10.1111/ijlh.13479 DOI: https://doi.org/10.1111/ijlh.13479

Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun rev. 2020;19(7):102573. https://doi.org/10.1016/j.autrev.2020.102573 DOI: https://doi.org/10.1016/j.autrev.2020.102573

Rosário C, Shoenfeld Y. The hyperferritinemic syndrome. Isr Med Assoc J. 2014;16(10):664-5. PMId:25438466