A critical analysis about the supposed role of azithromycin in the treatment of covid-19
Main Article Content
Abstract
After over one year, the coronavirus disease 2019 (covid-19) has still affected millions of people. For this reason, global efforts to promote better treatment of covid-19 have been undertaken focused on the repurposing of existing medications.In Brazil, azithromycin, a broad-spectrum antibiotic, has been used in association with other drugs as an immunomodulatory, anti-inflammatory, and anti-viral agent, regardless of bacterial co-infection. Indeed, data from experimental studies have demonstrated the capacity of this drug in reducing the production of infection-induced pro-inflammatory cytokines, such as IL-8, IL-6, and TNF-alpha. However, observational studies revealed conflicting results regarding its effect, whereas well-conducted clinical trials have not shown a considerable effect of this agent on the improvement of clinical outcomes. This narrative review addressed the possible role of this antibiotic in the management of covid-19, based on data from clinical and preclinical studies.
Article Details
Authors maintain copyright and grant the HSJ the right to first publication. From 2024, the publications wiil be licensed under Attribution 4.0 International , allowing their sharing, recognizing the authorship and initial publication in this journal.
Authors are authorized to assume additional contracts separately for the non-exclusive distribution of the version of the work published in this journal (e.g., publishing in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal page) at any point after the editorial process.
Also, the AUTHOR is informed and consents that the HSJ can incorporate his article into existing or future scientific databases and indexers, under the conditions defined by the latter at all times, which will involve, at least, the possibility that the holders of these databases can perform the following actions on the article.
References
Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA. 2020;323(8):709. https://doi.org/10.1001/jama.2020.1097 PMid:31999307
Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med. 2021;23(2):e3303. https://doi.org/10.1002/jgm.3303 PMid:33305456 PMCid:PMC7883242
Cucinotta D, Vanelli M. WHO Declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157-60. https://doi.org/10.23750/abm.v91i1.9397 PMid:32191675 PMCid:PMC7569573
WHO. Coronavirus Disease (COVID-2019) Situation Reports [Internet] [cited 2021 Nov 20]. Avaiable from: https://bit.ly/3CIKrDq
Marinho PRD, Cordeiro GM, Coelho HFC, Brandão SCS. Covid-19 in Brazil: A sad scenario. Cytokine Growth Factor Rev. 2021;58:51-54. https://doi.org/10.1016/j.cytogfr.2020.10.010 PMid:33199180
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19) A Review. JAMA. 2020;323(18):1824-36. https://doi.org/10.1001/jama.2020.6019 PMCid:PMC7492917
Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017-32. https://doi.org/10.1038/s41591-020-0968-3 PMid:32651579
Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010;23(3):590-615. https://doi.org/10.1128/CMR.00078-09 PMid:20610825 PMCid:PMC2901655
Min JY, Jang YJ. Macrolide therapy in respiratory viral infections. Mediators Inflamm. 2012;2012:649570. https://doi.org/10.1155/2012/649570 PMid:22719178 PMCid:PMC3375106
Echeverría-Esnal D, Martin-Ontiyuelo C, Navarrete-Rouco ME, De-Antonio Cuscó M, Ferrández O, Horcajada JP, Grau S. Azithromycin in the treatment of COVID-19: a review. Expert Rev Anti Infec Ther. 2021;19(2):147-63. https://doi.org/10.1080/14787210.2020.1813024 PMid:32853038
Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol. 2012;86(6):2900-10. https://doi.org/10.1128/JVI.05738-11 PMid:22258243 PMCid:PMC3302314
Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell. 2014;5(5):369-81. https://doi.org/10.1007/s13238-014-0026-3 PMid:24622840 PMCid:PMC3996160
Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020;507:167-73. ]https://doi.org/10.1016/j.cca.2020.04.027 PMid:32348783 PMCid:PMC7195008
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-62. https://doi.org/10.1038/s41577-020-0331-4 PMid:32376901 PMCid:PMC7201395
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. https://doi.org/10.1016/S0140-6736(20)30628-0
Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. https://doi.org/10.1172/jci.insight.138999
Kasal DA, De Lorenzo A, Tibiriçá E. COVID-19 and microvascular disease: pathophysiology of SARS-CoV-2 infection with focus on the renin-angiotensin system. Heart Lung Circ. 2020;29(11):1596-602. https://doi.org/10.1016/j.hlc.2020.08.010 PMid:32972810 PMCid:PMC7467122
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. https://doi.org/10.1084/jem.20200652 PMid:32302401 PMCid:PMC7161085
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med. 2020;217(6):e20200678. https://doi.org/10.1084/jem.20200678 PMid:32353870 PMCid:PMC7191310
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19) A Review. JAMA. 2020;324(8):782-93. https://doi.org/10.1001/jama.2020.12839 PMid:32648899
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. https://doi.org/10.1093/cid/ciaa248 PMid:32161940 PMCid:PMC7108125
Sreepadmanabh M, Sahu AK, Chande A. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. J Biosci. 2020;45(1):148. https://doi.org/10.1007/s12038-020-00114-6 PMid:33410425 PMCid:PMC7683586
Bakheit AH, Al-Hadiya BM, Abd-Elgalil AA. Azithromycin. Profiles Drug Subst Excip Relat Methodol. 2014;39:1-40. https://doi.org/10.1016/B978-0-12-800173-8.00001-5 PMid:24794904
Li H, Liu DH, Chen LL, Zhao Q, Yu YZ, Ding JJ, et al. Meta-analysis of the adverse effects of long-term azithromycin use in patients with chronic lung diseases. Antimicrob Agents Chemother. 2014;58(1):511-7. https://doi.org/10.1128/AAC.02067-13 PMid:24189261 PMCid:PMC3910718
Bosnar M, Čužić S, Bošnjak B, Nujić K, Ergović G, Marjanović N, et al. Azithromycin inhibits macrophage interleukin-1B production through inhibition of activator protein-1 in lipoplysaccharide induced murine pulmonary neutorphilia. Int Immunopharmacol. 2011;11(4):424-34. https://doi.org/10.1016/j.intimp.2010.12.010 PMid:21195124
Murphy DM, Forrest IA, Corris PA, Johnson GE, Small T, Jones D, et al. Azithromycin attenuates effects of lipopolysaccharide on lung allograft bronchial epithelial cells. J Heart Lung Transp. 2008;27(11):1210-6. https://doi.org/10.1016/j.healun.2008.07.026 PMid:18971093
Lin SJ, Kuo ML, Hsiao HS, Lee PT. Azithromycin modulates immune response of human monocyte-derived dendritic cells and CD4 + T cells. Int Immunopharmacol. 2016;40:318-326. https://doi.org/10.1016/j.intimp.2016.09.012 PMid:27664570
Tsai WC, Rodriguez ML, Young KS, Deng JC, Thannickal VJ, Tateda K, et al. Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am J Respir Crit Care Med. 2004;170(12):1331-9. https://doi.org/10.1164/rccm.200402-200OC PMid:15361366
Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646-54. https://doi.org/10.1183/09031936.00095809 PMid:20150207
Oliver ME, Hinks TSC. Azithromycin in viral infections. Rev Med Virol. 2021;31(2):e2163. https://doi.org/10.1002/rmv.2163 PMid:32969125 PMCid:PMC7536932
Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225-45. https://doi.org/10.1016/j.pharmthera.2014.03.003 PMid:24631273
Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012;366(20):1881-90https://doi.org/10.1056/NEJMoa1003833 PMid:22591294 PMCid:PMC3374857
Labro MT. Anti-inflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother. 1998;41 (Suppl B):37-46. https://doi.org/10.1093/jac/41.suppl_2.37 PMid:9579711
Andreani J, Le Bideau M, Duflot I, Jardot P, Rolland C, Boxberger M, et al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog. 2020;145:104228. https://doi.org/10.1016/j.micpath.2020.104228 PMid:32344177 PMCid:PMC7182748
Du X, Zuo X, Meng F, Han C, Ouyang W, Han Y, et al. Direct inhibitory effect on viral entry of influenza A and SARS-CoV-2 viruses by azithromycin. Cell Prolif. 2021;54(1):e12953. https://doi.org/10.1111/cpr.12953
Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huitsing K, et al. Henry Ford COVID-19 Task Force. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396-403. https://doi.org/10.1016/j.ijid.2020.06.099 PMid:32623082 PMCid:PMC7330574
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis. 2020;34:101663. https://doi.org/10.1016/j.tmaid.2020.101663 PMid:32289548 PMCid:PMC7151271
Lauriola M, Pani A, Ippoliti G, Mortara A, Milighetti S, Mazen M, et al. Effect of combination therapy of hydroxychloroquine and azithromycin on mortality in patients with COVID-19. Clin Transl Sci. 2020;13(6):1071-6. https://doi.org/10.1111/cts.12860 PMid:32926573 PMCid:PMC7719367
Morán-Blanco JI, Alvarenga Bonilla JA, Homma S, Suzuki K, Fremont-Smith P, Villar Gómez de Las Heras K. Antihistamines and azithromycin as a treatment for COVID-19 on primary health care - A retrospective observational study in elderly patients. Pulm Pharmacol Ther. 2021;67:101989. https://doi.org/10.1016/j.pupt.2021.101989 PMid:33465426 PMCid:PMC7833340
Başaran NC, Uyaroğlu OA, Telli Dizman G, Özışık L, Şahin TK, Taş Z, et al. Outcome of noncritical COVID-19 patients with early hospitalization and early antiviral treatment outside the ICU. Turk J Med Sci. 2021;51(2):411-20. https://doi.org/10.3906/sag-2006-173 PMid:32718127 PMCid:PMC8203135
Dubernet A, Larsen K, Masse L, Allyn J, Foch E, Bruneau L, et al. A comprehensive strategy for the early treatment of COVID-19 with azithromycin/hydroxychloroquine and/or corticosteroids: Results of a retrospective observational study in the French overseas department of Réunion Island. J Glob Antimicrob Resist. 2020;23:1-3. https://doi.org/10.1016/j.jgar.2020.08.001 PMid:32828896 PMCid:PMC7439827
Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA. 2020;323(24):2493-502. https://doi.org/10.1001/jama.2020.8630 PMid:32392282 PMCid:PMC7215635
Ip A, Berry DA, Hansen E, Goy AH, Pecora AL, Sinclaire BA, et al. Hydroxychloroquine and tocilizumab therapy in COVID-19 patients-An observational study. PLoS One. 2020;15(8):e0237693. https://doi.org/10.1371/journal.pone.0237693 PMid:32790733 PMCid:PMC7425928
Rodríguez-Molinero A, Pérez-López C, Gálvez-Barrón C, Miñarro A, Macho O, López GF, et al. COVID-19 research group of CSAPG. Observational study of azithromycin in hospitalized patients with COVID-19. PLoS One. 2020;15(9):e0238681. https://doi.org/10.1371/journal.pone.0238681 PMid:32881982 PMCid:PMC7470304
Satlin MJ, Goyal P, Magleby R, Maldarelli GA, Pham K, Kondo M, et al. Safety, tolerability, and clinical outcomes of hydroxychloroquine for hospitalized patients with coronavirus 2019 disease. PLoS One. 2020;15(7):e0236778. https://doi.org/10.1371/journal.pone.0236778 PMid:32701969 PMCid:PMC7377460
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. https://doi.org/10.1016/j.ijantimicag.2020.105949 PMid:32205204 PMCid:PMC7102549
Abbas HM, Al-Jumaili AA, Nassir KF, Al-Obaidy MW, Al Jubouri AM, Dakhil BD, et al. Assessment of COVID-19 treatment containing both hydroxychloroquine and azithromycin: a natural clinical trial. Int J Clin Pract. 2021;75(4):e13856. https://doi.org/10.1111/ijcp.13856 PMCid:PMC7744890
Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP, Veiga VC, Avezum A, et al. Coalition Covid-19 Brazil I Investigators. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med. 2020;383(21):2041-52. https://doi.org/10.1056/NEJMoa2019014 PMid:32706953 PMCid:PMC7397242
Sekhavati E, Jafari F, SeyedAlinaghi S, Jamalimoghadamsiahkali S, Sadr S, Tabarestani M, et al. Safety and effectiveness of azithromycin in patients with COVID-19: An open-label randomised trial. Int J Antimicrob Agents. 2020;56(4):106143. https://doi.org/10.1016/j.ijantimicag.2020.106143 PMid:32853672 PMCid:PMC7445147
Furtado R, Berwanger O, Fonseca HA, Corrêa TD, Ferraz LR, Lapa MG, et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): a randomised clinical trial. Lancet. 2020;396(10256):959-67. https://doi.org/10.1016/S0140-6736(20)31862-6
RECOVERY Collaborative Group. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10274):605-12. https://doi.org/10.1016/S0140-6736(21)00149-5
PRINCIPLE Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021;397(10279):1063-74. https://doi.org/10.1016/S0140-6736(21)00461-X