BCR-ABL kinase domain mutations analysis in chronic myeloid leukaemia patients that are not responsive to imatinib mesylate

Main Article Content

Laine Celestino Pinto
https://orcid.org/0000-0003-4246-5714
Lívia de Oliveira Sales
https://orcid.org/0000-0003-1214-5250
Tereza Cristina de Brito Azevedo
https://orcid.org/0000-0002-9352-326X
Caroline Aquino Moreira-Nunes
https://orcid.org/0000-0001-5845-3481
José Alexandre Rodrigues Lemos
https://orcid.org/0000-0002-7595-2597

Abstract

Objective: Chronic Myeloid Leukemia (CML) is a clonal disorder of hematopoietic progenitor cells, characterized by a reciprocal translocation between chromosomes 9 and 22, which results in the hybrid gene BCR-ABL1. Even with the progress in the treatment of the disease allowed by tyrosine kinase inhibitors, point mutations in this gene's domain are the main causes of therapeutic resistance, mainly to imatinib mesylate. This study aimed to analyze the point mutations of high resistance in a patient with CML and its possible correlation with treatment response. Methods: Cross-sectional study with 58 CML patients undergoing treatment with imatinib and with suboptimal response to therapy. Blood samples were analyzed by real-time PCR using TaqMan® chemistry to evaluate the following point mutations: T315I, E255V and Y253H. Results: None of the 58 patients had any of the investigated mutations. There was irregular use of the medication in 16% (n = 9), of which 44% (n = 4) reported discontinuous use and interruption on their own, and 56% (n = 5) showed intolerance to treatment and switched drugs. Conclusion: The absence of point mutations in CML patients analyzed in this study demonstrated that failure in therapy has no molecular correlation with the analyzed mutations and may be related to lower treatment adherence rates. These findings were demonstrated in a considerable number of evaluated patients, pointing out the need for education on the importance of following the recommendations on their treatment to avoid future complications.



Article Details

How to Cite
1.
Pinto LC, Sales L de O, Azevedo TC de B, Moreira-Nunes CA, Lemos JAR. BCR-ABL kinase domain mutations analysis in chronic myeloid leukaemia patients that are not responsive to imatinib mesylate. HSJ [Internet]. 2020Dec.10 [cited 2024May18];10(4):77-4. Available from: https://portalrcs.hcitajuba.org.br/index.php/rcsfmit_zero/article/view/994
Section
ORIGINAL ARTICLE
Author Biographies

Laine Celestino Pinto, Experimental Laboratory of Neuropathology (Lanex), Federal University of Pará

PhD in Genetics and Molecular Biology. Federal University of Pará (UFPA). Belém, Pará, Brazil.

Lívia de Oliveira Sales, Laboratory of Pharmacogenetics, Nucleus for Research and Development of Medicines (NPDM), Federal University of Ceará

Post-Graduate student in Clinical Pharmacology at the Federal University of Ceará (UFC). Fortaleza, Ceará, Brazil.

Tereza Cristina de Brito Azevedo, Department of Clinical and Academic Research, Ophir Loyola Hospital.

Master in Genetics and Molecular Biology from the Federal University of Pará (UFPA). PhD student in the Postgraduate Program in Oncology and Medical Sciences at UFPA. Oncohematologist, Ophir Loyola Hospital. Belém, Pará, Brazil.

Caroline Aquino Moreira-Nunes, Laboratory of Pharmacogenetics, Nucleus for Medicines Research and Development (NPDM), Federal University of Ceará

Master and PhD in Genetics and Molecular Biology by the Federal University of Pará (UFPA). Postdoctoral with emphasis on Genetics of Hereditary Tumors and Postdoctoral in Pharmacology. Professor and advisor in the Postgraduate Courses in Clinical Pharmacology and Translational Medicine at the Federal University of Ceará (UFC). Researcher at the Nucleus for Medicines Research and Development of UFC, Fortaleza, Ceará, Brazil.

José Alexandre Rodrigues Lemos, Institute of Biological Sciences, Federal University of Pará

Master and PhD in Genetics from the University of São Paulo (USP). Full Professor at the Institute of Biological Sciences at the Federal University of Pará (UFPA). Belém, Pará, Brazil.

References

1. Li W, Ji M, Lu F, Pang Y, Dong X, Zhang J, et al. Novel AF1q/MLLT11 favorably affects imatinib resistance and cell survival in chronic myeloid leukemia. Cell Death Dis. 2018;9(9):855. https://doi.org/10.1038/s41419-018-0900-7 PMid:30154435 PMCid:PMC6113287
2. Awad AS, Kankainen M, Ojala T, Koskenvesa P, Eldfors S Ghimire B, et al. Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia. Blood Adv. 2020;4(3):546-59. https://doi.org/10.1182/bloodadvances.2019000943 PMid:32045476 PMCid:PMC7013270
3. Bugler J, Kinstrie R, Scott MT, Vetrie D. Epigenetic reprogramming and emerging epigenetic therapies in CML. Front Cell Dev Biol. 2019;7:136. https://doi.org/10.3389/fcell.2019.00136 PMid:31380371 PMCid:PMC6652210
4. Hochhaus A, Saussele S, Rosti G, Mahon F-X, Janssen, JJWM, Hjorth-Hansen H. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv41-iv51. https://doi.org/10.1093/annonc/mdx219
5. Jain P, Kantarjian HM, Ghorab A, Sasaki K, Jabbour EJ, Gonzalez GN. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: Cohort study of 477 patients. Cancer. 2017;123(22):4391-402. https://doi.org/10.1002/cncr.30864 PMid:28743165 PMCid:PMC5673547
6. Tripathi AK, Verma, SP, Kumar N. Mutation Analysis in chronic myeloid leukemia patient in chronic phase on imatinib having delayed achievement of milestones or loss of response. Indian J Hematol Blood Transfus. 2016;33(3):316-20. https://doi.org/10.1007/s12288-016-0755-y PMid:28824231 PMCid:PMC5544645
7. Ru Y, Wang Q, Liu X, Zhang M, Zhong D, Ye M, et al. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL. Sci Rep. 2016;6:28352. https://doi.org/10.1038/srep28352 PMid:27329306 PMCid:PMC4916441
8. Muselli F, Peyron JF, Mary D. Druggable Biochemical pathways and potential therapeutic alternatives to target leukemic stem cells and eliminate the residual disease in chronic myeloid leukemia. Int J Mol Sci. 2019;20(22):5616-46. https://doi.org/10.3390/ijms20225616 PMid:31717629 PMCid:PMC6888542
9. Nath A, Wang J, Huang, SR. Pharmacogenetics and pharmacogenomics of targeted therapeutics in chronic myeloid leukemia. Mol Diag Ther. 2017;21(6):621-31. https://doi.org/10.1007/s40291-017-0292-x PMid:28698977 PMCid:PMC5693681
10. O'Hare T, Eide CA, Deininger MWN. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood. 2007;110(7):2242-9. https://doi.org/10.1182/blood-2007-03-066936 PMid:17496200
11. Cuellar S, Vozniak M, Rhodes J, Forcello N, Olszta D. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia. J Oncol Pharm Pract. 2017;24(6):433-52. https://doi.org/10.1177/1078155217710553 PMid:28580869 PMCid:PMC6094551
12. Baccarani M, Abruzzese E, Accurso V, Albano F, Annunziata M, Barulli S, et al. Managing chronic myeloid leukemia for treatment-free remission: a proposal from the GIMEMA CML WP. Blood Adv. 2019;3(24):4280-90. https://doi.org/10.1182/bloodadvances.2019000865 PMid:31869412 PMCid:PMC6929396
13. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966-84. https://doi.org/10.1038/s41375-020-0776-2 PMid:32127639 PMCid:PMC7214240
14. Branford S, Kim DDH, Apperley JF, Eide CA, Mustjoki S, Ong ST, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia. 2019;33(8):1835-50. https://doi.org/10.1038/s41375-019-0512-y PMid:31209280 PMCid:PMC6893870
15. Bonifacio M, Stagno F, Scaffidi L, Krampera M, Di Raimondo F. Management of chronic myeloid leukemia in advanced phase. Front Oncol. 2019;9:1132. https://doi.org/10.3389/fonc.2019.01132 PMid:31709190 PMCid:PMC6823861
16. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391-405. https://doi.org/10.1182/blood-2016-03-643544 PMid:27069254
17. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-22. https://doi.org/10.1373/clinchem.2008.112797 PMid:19246619
18. Chandrasekhar C, Kumar PS, Sarma PVGK. Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Sci Rep. 2019;9(1):2412-29. https://doi.org/10.1038/s41598-019-38672-x PMid:30787317 PMCid:PMC6382822
19. Neves WB, Brito AM, Vasconcelos AP, Melo FCBC, Melo RAM. Incidence and spatial distribution of chronic myeloid leukemia by regions of economic development in the state of Pernambuco, Brazil. Hematol Transfus Cell Ther. 2019;41(3):212-15. https://doi.org/10.1016/j.htct.2018.08.009 PMid:31085146 PMCid:PMC6732521
20. Mendizabal AM, Younes N, Levine PH. Geographic and income variations in age at diagnosis and incidence of chronic myeloid leukemia. Int J Hematol. 2015;103(1):70-8. https://doi.org/10.1007/s12185-015-1893-y PMid:26547571
21. Levine PH, Ajmera K, O'Neill B, Venkatesh V, Garcia-Gonzalez P, Hoffman HJ. Demographic factors related to young age at diagnosis of chronic myeloid leukemia in India. Clin Epidemiol Global Health.2016;4(4):188-92. https://doi.org/10.1016/j.cegh.2016.06.001
22. Khazaal MS, Hamdan FB, Al-Mayah QS. Association of BCR/ABL transcript variants with different blood parameters and demographic features in Iraqi chronic myeloid leukemia patients. Mol Genet Genomic Med. 2019;7(8):e809. https://doi.org/10.1002/mgg3.809 PMid:31206255 PMCid:PMC6687619
23. Vieira-Mion AL, Pereira NF, Funke VAM, Pasquini R. Molecular response to imatinib mesylate of Brazilian patients with chronic myeloid leukemia. Rev Bras Hematol Hemoter. 2017;39(3):210-15. https://doi.org/10.1016/j.bjhh.2017.04.007 PMid:28830599 PMCid:PMC5568590
24. Geissler J, Sharf G, Bombaci F, Daban M, Jong J, Gavin T. Factors influencing adherence in CML and ways to improvement: Results of a patient-driven survey of 2546 patients in 63 countries. J Cancer Res Clin Oncol. 2017;143(7):1167-76. https://doi.org/10.1007/s00432-017-2372-z PMid:28289895
25. Kvarnström K, Airaksinen M, Liira H. Barriers and facilitators to medication adherence: a qualitative study with general practitioners. BMJ Open. 2018;8(1):e015332. https://doi.org/10.1136/bmjopen-2016-015332 PMid:29362241 PMCid:PMC5786122
26. Andrade AR, Leitão DS, Paz IP, Evangelista TR, Mello VJ, Hamoy M. Analysis of imatinib adherence in chronic myeloid leukemia: a retrospective study in a referral hospital in the Brazilian Amazon. Hematol Transfus Cell Ther. 2019;41(2):106-13. https://doi.org/10.1016/j.htct.2018.09.006 PMid:31079656 PMCid:PMC6517621
27. Shen C, Zhao B, Liu L, Shih Y-CT. Adherence to tyrosine kinase inhibitors among Medicare Part D beneficiaries with chronic myeloid leukemia. Cancer. 2017;124(2):364-73. https://doi.org/10.1002/cncr.31050 PMid:28976559 PMCid:PMC5764158
28. Rychter A, Jerzmanowski P, Hołub A, Specht-Szwoch Z, Kalinowska V, Tęgowska U. Treatment adherence in chronic myeloid leukaemia patients receiving tyrosine kinase inhibitors. Med Oncology. 2017;34(6):104-13. https://doi.org/10.1007/s12032-017-0958-6 PMid:28444623 PMCid:PMC5405100