O Papel da Imunidade Inata na COVID-19
Conteúdo do artigo principal
Resumo
O sistema imune apresenta papel importante na pandemia da COVID-19, pois está envolvido na patogênese e agravamento da doença. O objetivo desta revisão é abordar os aspectos da imunidade inata na COVID-19, especialmente o papel dos neutrófilos. O sistema imune inato corresponde à primeira defesa do organismo, porém é necessário um equilíbrio para obter efetividade contra o invasor sem lesar excessivamente o hospedeiro. O desequilíbrio imune está relacionado com quadros mais graves e à ativação aberrante de neutrófilos, sendo a linfopenia e a neutrofilia preditores de pior prognóstico em pacientes com COVID-19. Especula-se que a neutrofilia seja uma importante fonte para formação excessiva de NET (Neutrophil Extracellular Traps), levando ao aumento da resposta inflamatória e evolução desfavorável da doença. As NET também estão associadas à tempestade de citocinas, outro mecanismo relacionado a gravidade da COVID-19. Portanto, estratégias que envolvam a imunomodulação podem ter um papel importante no controle da doença.
Detalhes do artigo
Os autores mantêm os direitos autorais e concedem ao HSJ o direito de primeira publicação. A partir de 2024, as publicações serão licenciadas sob a Attribution 4.0 International , permitindo seu compartilhamento, reconhecendo a autoria e publicação inicial nesta revista.
Os autores estão autorizados a assumir contratos adicionais separadamente para distribuição não exclusiva da versão do trabalho publicada nesta revista (por exemplo, publicação em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Os autores são incentivados a publicar e distribuir seu trabalho on-line (por exemplo, em repositórios institucionais ou em sua página pessoal) a qualquer momento após o processo editorial.
Além disso, o AUTOR fica informado e consente que o HSJ possa incorporar seu artigo em bases de dados e indexadores científicos existentes ou futuros, nas condições definidas por estes a cada momento, o que envolverá, pelo menos, a possibilidade de que os titulares de esses bancos de dados podem executar as seguintes ações no artigo.
Referências
Golonka RM, Saha P, Yeoh BS, Chattopadhyay S, Gewirtz AT, Joe B, et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics. 2020;52(5):217‐21. doi: 10.1152/physiolgenomics.00033.2020
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7(1):11. doi: 10.1186/s40779-020-00240-0
Sun J, He WT, Wang L, Lai A, Ji X, Zhai X, et al. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med. 2020;26(5):483‐495. doi: 10.1016/j.molmed.2020.02.008
Freitas ARR, Napimoga M, Donalisio MR. Análise da gravidade da pandemia de Covid-19. Epidemiol Serv Saude. 2020;29(2):e2020119. doi: 10.5123/S1679-49742020000200008
Hindson J. COVID-19: faecal–oral transmission?. Nat Rev Gastroenterol Hepatol. 2020;17(5):259. doi: 10.1038/s41575-020-0295-7
Singhal T. A review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281‐6. doi: 10.1007/s12098-020-03263-6
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13. doi: 10.1016/s0140-6736(20)30211-7
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061‐9. doi: 10.1001/jama.2020.1585
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652
Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv. 2020. 02.10.20021832 [preprint]. doi: 10.1101/2020.02.10.20021832
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;ciaa248. doi: 10.1093/cid/ciaa248
Vabret N, Britton G, Gruber C, Hegde S, Kim J, Kuksin M et al. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910-41. doi: 10.1016/j.immuni.2020.05.002
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol. 2020;215:108448. doi: 10.1016/j.clim.2020.108448
Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-8. doi: 10.1016/j.jpha.2020.03.001
Zhong J, Tang J, Ye C, Dong L. The immunology of COVID-19: is immune modulation an option for treatment? Lancet Rheumatol. 2020;2(7):E428-36. doi: 10.1016/S2665-9913(20)30120-X
Liew PX, Kubes P. The neutrophil's role during health and disease. Physiol Rev. 2019; 99(2):1223‐48. doi: 10.1152/physrev.00012.2018
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1-9. doi: 10.12932/ap-200220-0772
Twaddell SH, Baines KJ, Grainge Christopher, Gibson PG. The emerging role of neutrophil extracellular traps in respiratory disease. Chest. 2019;156(4):774–82. doi: 10.1016/j.chest.2019.06.012
Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. doi: 10.1172/jci.insight.138999
Mozzini C, Girelli D. The role of neutrophil extracellular traps in Covid-19: Only an hypothesis or a potential new field of research? Thromb Res. 2020;191:26‐27. doi: 10.1016/j.thromres.2020.04.031
Iba T, Levy JH, Raj A, and Warkentin TE. Advance in the management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Clin Med. 2019;8(5):728. doi: 10.3390/jcm8050728
Ward PA, Fattahi F. New strategies for treatment of infectious sepsis. J Leukoc Biol. 2019;106(1):187-92. doi: 10.1002/JLB.4MIR1118-425R
Potey PM, Rossi AG, Lucas CD, Dorward DA. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J Pathol. 2019;247(5):672‐85. doi: 10.1002/path.5221
Thierry A, Roch B. NETs By-products and Extracellular DNA May Play a Key Role in COVID-19 Pathogenesis: Incidence on Patient Monitoring and Therapy. Preprints [preprint]. 2020; 2020040238. doi: 10.20944/preprints202004.0238.v1
Veras FP, Pontelli M, Silva C, Toller-Kawahisa J, Lima M, Nascimento D, et al. SARS-CoV-2 triggered neutrophil extracellular traps (NETs) mediate COVID-19 pathology. MedRxiv [preprint]; 2020.06.08.20125823. doi: 10.1101/2020.06.08.20125823
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607-13. doi: 10.1016/j.jinf.2020.03.037
Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269‐270. doi: 10.1038/s41577-020-0308-3
Narasaraju T, Tang BM, Herrmann M, Muller S, Chow VTK, Radic M. Neutrophilia and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19. Front Pharmacol. 2020;11:870. doi: 10.3389/fphar.2020.00870
Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther. 2020;5(1):84. doi: 10.1038/s41392-020-0191-1