Adult human neural cells in culture following traumatic brain injury

Main Article Content

Marco Aurelio M Freire
https://orcid.org/0000-0002-6483-0498
Starlynn Freire dos Santos
Gabriel Sousa Rocha
https://orcid.org/0000-0001-7101-8492
Ianara Mendonça Costa
Lucidio Clebeson Oliveira
https://orcid.org/0000-0002-2033-7546
Fausto Pierdoná Guzen
Daniel Falcão
José Rodolfo Lopes P Cavalcanti
https://orcid.org/0000-0002-1554-3249

Abstract

Objective: The present study aims to evaluate the viability of adult human neural cells in culture obtained from traumatized brain tissues collected in emergency surgery procedures. Methods: Exploratory, descriptive, quantitative and cross-sectional study evaluating samples obtained from patients who underwent traumatic brain injury with extrusion of brain tissue submitted to cell culture in a standardized medium, being preserved during 168h. After observation under phase contrast microscopy and immunohistochemical processing for neuronal (MAP-2) and glial (GFAP) markers, morphometric parameters of neural cells (cell body area, dendritic field length and fractal dimension) were evaluated using ImageJ software, with data obtained after 24, 72 and 168h being compared using non-parametric Kruskal Wallis test, followed by Dunn’s post hoc test. Results: The explant of the nervous tissue revealed a consolidated pattern of cell migration into the culture medium. Cell proliferation, upon reaching confluence, presented an aspect of cellular distribution juxtaposed along the culture medium at all time points analyzed. Both neurons and glial cells remained viable after 168h in culture, with their morphologies not varying significantly throughout the time points evaluated. Immunohistochemistry for MAP-2 showed a relatively well-preserved cytoskeletal organization. GFAP immunoreactivity revealed activated astrocytes especially at the later time point. Conclusions: Our results point out the viability of cell culture from traumatized human nervous tissue, opening up perspectives for the use of substances of natural origin that may contribute neuroprotectively to neuronal maintenance in culture, allowing future translational approach.



Article Details

How to Cite
1.
Freire MAM, Santos SF dos, Rocha GS, Costa IM, Oliveira LC, Guzen FP, Falcão D, Cavalcanti JRLP. Adult human neural cells in culture following traumatic brain injury. Health Sci J [Internet]. 2023Sep.17 [cited 2024Apr.28];13(3):23-0. Available from: https://portalrcs.hcitajuba.org.br/index.php/rcsfmit_zero/article/view/1422
Section
ORIGINAL ARTICLE
Author Biographies

Marco Aurelio M Freire, State University of Rio Grande do Norte

Biologist, PhD in Neurosciences and Cell Biology from the Federal University of Pará.

Starlynn Freire dos Santos, State University of Rio Grande do Norte

Physician, Master in Health and Society from the State University of Rio Grande do Norte.

Gabriel Sousa Rocha, State University of Rio Grande do Norte

Physical Educator, Master in Biochemistry and Molecular Biology from the State University of Rio Grande do Norte.

Ianara Mendonça Costa, State University of Rio Grande do Norte

Nutritionist, Master in Health and Society from the State University of Rio Grande do Norte.

Lucidio Clebeson Oliveira, State University of Rio Grande do Norte

PhD in Psychobiology from the Federal University of Rio Grande do Norte.

Fausto Pierdoná Guzen, State University of Rio Grande do Norte

PhD in Psychobiology from the Federal University of Rio Grande do Norte.

Daniel Falcão, Virginia Commonwealth University

MD, Specialist in Vascular Neurology at the University of South Florida.

José Rodolfo Lopes P Cavalcanti, State University of Rio Grande do Norte

PhD in Psychobiology from the Federal University of Rio Grande do Norte.

References

1. Van Itallie TB. Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism. 2019;100S:153943. https://doi.org/10.1016/j.metabol.2019.07.007
2. Graham NSN, Sharp DJ. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry. 2019;90(11):1221-33. https://doi.org/10.1136/jnnp-2017-317557
3. Sariaslan A, Sharp DJ, D'Onofrio BM, Larsson H, Fazel S. Long-Term outcomes associated with traumatic brain injury in childhood and adolescence: a nationwide Swedish cohort study of a wide range of medical and social outcomes. PLoS Med. 2016;13(8):e1002103. https://doi.org/10.1371/journal.pmed.1002103
4. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YA, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080-97. https://doi.org/10.3171/2017.10.JNS17352
5. Global Burden of Disease Study 2016. Traumatic brain injury and spinal cord injury collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56-87. https://doi.org/10.1016/S1474-4422(18)30415-0
6. Ortiz-Prado E, Mascialino G, Paz C, Rodrigue-Lorenzana A, Gómez-Barreno L, Simbaña-Rivera K, et al. A nationwide study of incidence and mortality due to traumatic brain injury in Ecuador (2004-2016). Neuroepidemiology. 2020;54(1):33-44. https://doi.org/10.1159/000502580
7. Maas AIR. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987-1048. https://doi.org/10.1016/S1474-4422(17)30371-X
8. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveillance Summ. 2017;66(9):1-16. https://doi.org/10.15585/mmwr.ss6609a1
9. Daugherty J, Waltzman D, Sarmiento K, Xu L. Traumatic Brain Injury-Related Deaths by Race/Ethnicity, Sex, Intent, and Mechanism of Injury - United States, 2000-2017. MMWR Morb Mortal Wkly Rep. 2019;68(46):1050-6. https://doi.org/10.15585/mmwr.mm6846a2
10. Bonow RH, Barber J, Temkin NR, Videtta W, Rondina C, Petroni G, et al. The outcome of severe traumatic brain injury in Latin America. World Neurosurg. 2018;111:e82-e90. https://doi.org/10.1016/j.wneu.2017.11.171
11. Almeida CER, Sousa-Filho JL, Dourado JC, Gontijo PAM, Dellaretti MA, Costa BS. Traumatic brain injury epidemiology in Brazil. World Neurosurg. 2016;87:540-547. https://doi.org/10.1016/j.wneu.2015.10.020
12. Magalhaes ALG, Barros JLVM, Cardoso MGF, Rocha NP, Faleiro RM, Souza LC, et al. Traumatic brain injury in Brazil: an epidemiological study and systematic review of the literature. Arq Neuropsiquiatr. 2022;80(4):410-23. https://doi.org/10.1590/0004-282x-anp-2021-0035
13. Rosenbaum AM, Gordon WA, Joannou A, Berman BA. Functional outcomes following post-acute rehabilitation for moderate-to-severe traumatic injury. Brain Inj. 2018;32(7):907-14. https://doi.org/10.1080/02699052.2018.1469040
14. Cariello AN, Perrin PB, Agudelo YR, Plaza SLO, Quijano-Martínez MC, Trujillo MA et al. Predictors of longitudinal depression trajectories after traumatic brain injury in Latin America: A multi-site study. NeuroRehabilitation. 2020;46(2):205-12. https://doi.org/10.3233/NRE-192972
15. Scheid R, Walther K, Guthke T, Preul C, von Cramon DY. Cognitive sequelae of diffuse axonal injury. Arch Neurol. 2006;63(3):418-24. https://doi.org/10.1001/archneur.63.3.418
16. Shively S, Scher AI, Perl DP, Diaz-Arrastia R. Dementia resulting from traumatic brain injury: what is the pathology? Arch Neurol. 2012;69(10):1245-51. https://doi.org/10.1001/archneurol.2011.3747
17. Cardoso MGF, Faleiro RM, Paula JJ, Kummer A, Caramelli P, Teixeira AL, et al. Cognitive impairment following acute mild traumatic brain injury. Front Neurol. 2019;10:198. https://doi.org/10.3389/fneur.2019.00198
18. Guimarães JS, Freire MAM, Lima RR, Souza-Rodrigues RD, Costa AMR, dos Santos CD, et al. Mecanismos de degeneración secundaria en el sistema nervioso central durante los trastornos neuronales agudos y el daño en la sustancia blanca. Rev Neurol. 2009;48(6):304-10. https://doi.org/10.33588/rn.4806.2008512
19. DeKosky ST, Asken BM. Injury cascades in TBI-related neurodegeneration. Brain Inj. 2017;31(9):1177-82. https://doi.org/10.1080/02699052.2017.1312528
20. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care. 2002;8(2):101-5. https://doi.org/10.1097/00075198-200204000-00002
21. Freire MAM. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med J. 2012;61(7):751-5. https://doi.org/10.7727/wimj.2012.003
22. Gähwiler BH. Nerve cells in culture: The extraordinary discovery by Ross Granville Harrison. Brain Res Bull. 1999;50:343-4. https://doi.org/10.1016/S0361-9230(99)00097-0
23. Van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7:e1000245. https://doi.org/10.1371/journal.pmed.1000245
24. Gibbons HM, Dragunow M. Adult human brain cell culture for neuroscience research. Int J Biochem Cell Biol. 2010;42(6):844-56. https://doi.org/10.1016/j.biocel.2009.12.002
25. Ray B, Chopra N, Long JM, Lahiri DK. Human primary mixed brain cultures: preparation, differentiation, characterization and application to neuroscience research. Mol Brain. 2014;7:63. https://doi.org/10.1186/s13041-014-0063-0
26. Hong YJ, Do JT. Neural lineage differentiation from pluripotent stem cells to mimic human brain tissues. Front Bioeng Biotechnol. 2019;7:400. https://doi.org/10.3389/fbioe.2019.00400
27. Spaethling JM, Na YJ, Lee J, Ulyanova AV, Baltuch GH, Bell TJ et al. Primary cell culture of live neurosurgically-resected aged adult human brain cells and single cell transcriptomics. Cell Rep. 2017;18(3):791-803. https://doi.org/10.1016/j.celrep.2016.12.066
28. Park TIH, Schweder P, Lee K, Dieriks BV, Jung Y, Smyh L et al. Isolation and culture of functional adult. Brain Commun. 2020;2(2):fcaa171. https://doi.org/10.1093/braincomms/fcaa171
29. Lucena EES, Guzen FP, Cavalcanti JRLP, Marinho MJM, Pereira WO, Barboza CAG et al. Plasticity of mesenchymal stem cells from mouse bone marrow in the presence of conditioned medium of the facial nerve and fibroblast growth factor-2. ScientificWorld Journal. 2014;2014:457380. https://doi.org/10.1155/2014/457380
30. Freire MAM, Faber J, Picanco-Diniz CW, Franca JG, Pereira A. Morphometric variability of nicotinamide adenine dinucleotide phosphate diaphorase neurons in the primary sensory areas of the rat. Neuroscience. 2012;205:140-53. https://doi.org/10.1016/j.neuroscience.2011.12.029
31. Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic Brain Injury: An overview of epidemiology, pathophysiology, and medical management. Med Clin North Am. 2020;104(2):213-38. https://doi.org/10.1016/j.mcna.2019.11.001
32. McInnes K, Friesen CL, MacKenzie DE, Westwood DA, Boe SG. Mild Traumatic brain injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS One. 2017;12(4):e0174847. https://doi.org/10.1371/journal.pone.0174847
33. Estrada-Rojo F, Martínez-Tapia RJ, Estrada-Bernal F, Martínez-Vargas M, Perez-Arredondo A, Flores-Avalos L, et al. Models used in the study of traumatic brain injury. Rev Neurosci. 2018;29(2):139-49. https://doi.org/10.1515/revneuro-2017-0028
34. Wu YH, Rosset S, Lee TR, Dragunow M, Park T, Shim V. In Vitro Models of Traumatic Brain Injury: A Systematic Review. J Neurotrauma. 2021;38(17):2336-72. https://doi.org/10.1089/neu.2020.7402
35. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015;112(23):7285-90. https://doi.org/10.1073/pnas.1507125112
36. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89(1):37-53. https://doi.org/10.1016/j.neuron.2015.11.013
37. Gumy LF, Katrukha EA, Grigoriev I, Jaarsma D, Kapitein LC, Akhmanova A, et al. MAP2 defines a pre-axonal filtering zone to regulate KIF1-versus KIF5-dependent cargo transport in sensory neurons. Neuron. 2017;94(2):347-362.e7. https://doi.org/10.1016/j.neuron.2017.03.046
38. Freire MAM, Rocha GS, Costa IM, Oliveira LC, Guzen FP, Cavalcanti JRLP. Roles of the terpenoid Astragaloside IV in altered states of the nervous system: an updated review. Res Soc Develop. 2022;11(6):e11711628861. https://doi.org/10.33448/rsd-v11i6.28861
39. Miguel CA, Noya-Riobó MV, Mazzone GL, Villar MJ, Coronel MF. Antioxidant, anti-inflammatory and neuroprotective actions of resveratrol after experimental nervous system insults. Special focus on the molecular mechanisms involved. Neurochem Int. 2021;150:105188. https://doi.org/10.1016/j.neuint.2021.105188
40. Fang J, Wang Z, Wang P, Wang M. Extraction, structure and bioactivities of the polysaccharides from Ginkgo biloba: A review. Int J Biol Macromol. 2020;162:1897-905. https://doi.org/10.1016/j.ijbiomac.2020.08.141